
OMTP

TECHNOLOGY
ASSESSMENT

OMTP JAVATM

WITH FOCUS ON CDC:
DEFINITION AND REQUIREMENTS

This document contains information that is confidential and proprietary to

OMTP Limited. The information may not be used, disclosed or reproduced

without the prior written authorisation of OMTP Limited, and those so

authorised may only use this information for the purpose consistent with the

authorisation.

VERSION: Version 1_0, Release 1

STATUS: Approved

DATE OF LAST EDIT: 10 January 2006

OWNER: OMTP JavaTM Workstream

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 2 of 44

CONTENTS

1 PREFACE .. 5

1.1 DOCUMENT PURPOSE ... 5

1.2 INTENDED AUDIENCE... 5

1.3 CONVENTIONS.. 5

2 INTRODUCTION.. 7

2.1 OMTP JAVA
TM

 WORKSTREAM GOALS...................................... 7

2.2 RELATIONSHIP TO OTHER OMTP GROUPS/WORKSTREAMS 7

2.2.1 OMTP Software Group ... 7
2.2.2 OMTP User Experience Group... 8
2.2.3 OMTP Application Security... 8
2.2.4 Other OMTP Groups .. 8

3 OMTP JAVATM
 PLATFORM VISION... 9

3.1 JAVA
TM

 PLATFORM VISION AND CORE COMPONENTS 9

3.1.1 MSA CDC (JSR 249).. 10
3.1.2 Relationship to MSA CLDC (JSR 248) 11

3.2 BACKWARDS COMPATIBILITY.. 11

4 IDENTIFIED GAP AREAS/REQUIREMENTS..................... 12

4.1 RUNTIME MANAGEMENT AND ISOLATION 12

4.1.1 Problem description.. 12
4.1.2 Requirements ... 13
4.1.3 Actions taken.. 13
4.1.4 Results and decisions... 13

4.2 FILE SYSTEM.. 14

4.2.1 Problem description.. 14
4.2.2 Requirements ... 14
4.2.3 Actions taken.. 15
4.2.4 Results and decisions... 15

4.3 APPLICATION META DATA .. 16

4.3.1 Problem description.. 16
4.3.2 Requirements ... 16
4.3.3 Actions taken.. 17
4.3.4 Results and decisions... 17

4.4 PERSISTENT ALARMS.. 17

4.4.1 Problem description.. 17

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 3 of 44

4.4.2 Requirements ... 18
4.4.3 Actions taken.. 18
4.4.4 Results and decisions... 18

4.5 SYSTEM INFORMATION AND NOTIFICATIONS 20

4.5.1 Problem description.. 20
4.5.2 Requirements ... 20
4.5.3 Actions taken.. 24
4.5.4 Results and decisions... 25

4.6 DIGITAL RIGHTS MANAGEMENT 26

4.6.1 Problem.. 26
4.6.2 Requirements ... 26
4.6.3 Actions Taken... 26
4.6.4 Results ... 26

5 NEXT STEPS... 27

6 APPENDIX 1: UI TECHNOLOGIES - EVALUATION CRITERIA &
RESULTS.. 28

6.1 OVERVIEW ... 28

6.2 EVALUATION BASED ON OMTP UI CUSTOMIZATION USE CASES

... 28

6.3 EVALUATION CRITERIA .. 30

6.4 EVALUATION RESULTS .. 33

7 ABBREVIATIONS.. 43

8 REFERENCED DOCUMENTS .. 44

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 4 of 44

This document contains information that is confidential and proprietary to
OMTP Limited. The information may not be used, disclosed or reproduced
without the prior written authorisation of OMTP Limited, and those so
authorised may only use this information for the purpose consistent with the
authorisation.

The information contained in this document represents the current view held
by OMTP Ltd. on the issues discussed as of the date of publication.

This document is provided “as is” with no warranties whatsoever including any
warranty of merchantability, non-infringement, or fitness for any particular
purpose. All liability (including liability for infringement of any property rights)
relating to the use of information in this document is disclaimed. No license,
express or implied, to any intellectual property rights are granted herein.

This document is distributed for informational purposes only and is subject to
change without notice. Readers should not design products based on this
document.

Each Open Mobile Terminal Platform member and participant has agreed to
use reasonable endeavours to inform the Open Mobile Terminal Platform in a
timely manner of Essential IPR as it becomes aware that the Essential IPR is
related to the prepared or published specification. The declared Essential IPR
is publicly available to members and participants of the Open Mobile Terminal
Platform and may be found on the “OMTP IPR Declarations” list at the OMTP
team room.

The Open Mobile Terminal Platform has not conducted an independent IPR
review of this document and the information contained herein, and makes no
representations or warranties regarding third party IPR, including without
limitation patents, copyrights or trade secret rights. This document may
contain inventions for which you must obtain licenses from third parties before
making, using or selling the inventions.

Defined terms and applicable rules above are set forth in the Schedule to the
Open Mobile Terminal Platform Member and Participation Annex Form.

© 2006 Open Mobile Terminal Platform Ltd. All rights reserved. No part of this
document may be reproduced or transmitted in any form or by any means
without prior written permission from OMTP Ltd. “OMTP” is a registered
trademark. Other product or company names mentioned herein may be the
trademarks of their respective owners.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 5 of 44

1 PREFACE

1.1 DOCUMENT PURPOSE

This document is the OMTP JavaTM with Focus on CDC Requirements
Specification. The purpose of the document is to identify requirements
from the perspective of wireless network operators to develop an
advanced mobile execution environment based on Java™ technology.

JavaTM technology has established itself as a leading execution
environment for downloadable applications. The industry has
collectively identified the potential in the technology to go beyond its
current state. In order to enable the delivery of further value-added
services to consumers, the JavaTM Micro Edition (JavaTM ME) platform
needs to grow in terms of APIs that the developers can use to write
interesting applications. There is also a need to alleviate the
fragmentation introduced due to implementation variations.

This document builds upon existing JavaTM platform standards, and
identifies technology gaps that are not yet covered by existing JCP
(JavaTM Community Process) standards. The OMTP JavaTM Workstream
will feed these gap requirements into JCP standardization activities
(which may potentially initiate new JSRs) to ensure that all the operator
requirements can be fulfilled by the JavaTM platform. A central goal of
this document is to perform a gap analysis for advanced mobile
terminal platforms that are based on JavaTM technology.

The document also identifies and defines key operator requirements for
the JavaTM platform in the user interface area. In addition, this
document provides criteria to effectively evaluate two possible user
interface technologies for the advanced JavaTM ME platform.

1.2 INTENDED AUDIENCE

This requirement document is intended primarily for companies and
individuals who are involved in the standardization and implementation
of the JavaTM Micro Edition platform (Java™ ME). The document is
potentially useful also for tool vendors, content developers, or other
parties who are generally interested in the future directions and
evolution of JavaTM technology for mobile devices.

1.3 CONVENTIONS

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”,
“SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”,
“MAY”, and “OPTIONAL” in this document are to be interpreted as
described in RFC2119 [1].

• MUST: This word, or the terms "REQUIRED" or "SHALL", mean
that the definition is an absolute requirement of the specification.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 6 of 44

• MUST NOT: This phrase, or the phrase "SHALL NOT", mean
that the definition is an absolute prohibition of the specification.

• SHOULD: This word, or the adjective "RECOMMENDED", mean
that there may exist valid reasons in particular circumstances to
ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different
course.

• SHOULD NOT: This phrase, or the phrase "NOT
RECOMMENDED" mean that there may exist valid reasons in
particular circumstances when the particular behaviour is
acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing
any behaviour described with this label.

• MAY: This word, or the adjective "OPTIONAL", mean that an
item is truly optional. One vendor may choose to include the
item because a particular marketplace requires it or because the
vendor feels that it enhances the product while another vendor
may omit the same item. An implementation which does not
include a particular option MUST be prepared to interoperate
with another implementation which does include the option,
though perhaps with reduced functionality. In the same vein an
implementation which does include a particular option MUST be
prepared to interoperate with another implementation which
does not include the option (except, of course, for the feature the
option provides.)

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 7 of 44

2 INTRODUCTION

2.1 OMTP JAVA
TM

 WORKSTREAM GOALS

The OMTP Java Workstream has several goals that it is working
toward. These goals support the overall effort to make the Java
execution environment a compelling and complete platform which
meets the needs of OMTP which is suitable for both operators and
handset manufacturers. The goals that support this overall effort are
as follows

• Define the base platform that will be used as the starting point
for next-generation advanced mobile devices.

• Define platform requirements that will yield less fragmentation in
the market.

• Identify gap technologies that are needed to enable JavaTM

applications to become more resident on handsets, e.g., in order
to support built-in system applications written in the JavaTM

programming language.

• Drive gap requirements into JCP standardization activities and, if
needed, initiate new JSRs to ensure that the operator
requirements can be met by the JavaTM platform.

• Define User Experience and customization requirements that
meet the specified needs of operators.

• Provide evaluation criteria to guide the User Interface
technology selection that will meet the operator requirements.

The OMTP JavaTM Workstream will feed the requirements into JCP
standardization activities, and may potentially initiate new JSRs in
order to ensure that the operator requirements can be met by the
Java™ platform.

2.2 RELATIONSHIP TO OTHER OMTP GROUPS/WORKSTREAMS

2.2.1 OMTP SOFTWARE GROUP

The OMTP Software group is identifying requirements that are
independent of a specific technology. These requirements will be used
by the JavaTM Workstream as guidance in both the creation of
requirements as well as defining specific gap technologies to help meet
its goals. The JavaTM Workstream, by nature, will establish more
specific requirements since its focus is specifically on the development
of the JavaTM ME platform for the wireless industry.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 8 of 44

2.2.2 OMTP USER EXPERIENCE GROUP

The User Experience group is identifying specific use cases and
requirements for operators to provide a compelling user experience.
The Software group will define generic (platform agnostic)
requirements based on this work. JavaTM Workstream will then utilize
this set of relevant requirements and define the specific User
Experience use cases and requirements for the JavaTM Platform.

2.2.3 OMTP APPLICATION SECURITY

The Application Security group is identifying security requirements that
will help enable the protection of the mobile devices and networks from
rogue applications and external attacks. The JavaTM Workstream will
monitor the work of the Application Security group closely, and utilize
the results in the future activities as necessary. The consideration,
development, and requirement of a strong and flexible security
framework in terminals including JavaTM technology is key to their
acceptance in the marketplace. Future revisions of this document must
align with the work of Application Security group.

2.2.4 OTHER OMTP GROUPS

The output of the other groups will be evaluated for relevance to the
JavaTM platform. If relevant, this data will be incorporated into the future
work of the JavaTM Workstream.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 9 of 44

3 OMTP JAVATM PLATFORM VISION
This chapter summarizes the overall JavaTM Platform vision and the
high-level JavaTM platform architecture defined by the OMTP JavaTM

Workstream. The results in this chapter are based on numerous
conversations in the JavaTM Workstream meetings, the gap analysis
performed by a task force initiated by the JavaTM Workstream, as well
as the use cases developed during the OMTP activity.

3.1 JAVATM PLATFORM VISION AND CORE COMPONENTS

In today’s mobile devices, the role of the JavaTM platform is primarily
that of a “content player”. The JavaTM platform is used mainly for
executing 3rd party applications – most typically games – that have
been downloaded to the device over the wireless network. The JavaTM

platform has become enormously successful in this role. It has been
estimated that over 800 million mobile devices already support the
JavaTM ME platform. Tens of thousands of commercial applications
have already been developed, generating global revenues of over $1
billion annually.

Based on the requirements and use cases collected from operators,
there is a desire to take the role of the JavaTM platform in mobile
devices further, and to enable the use of the JavaTM platform not only as
a content development platform but also as a platform for the creation
of system software and resident applications. The JavaTM platform
capabilities should also be extended to enable more flexible user
interface customization to meet the operator needs.

In order to support these extended capabilities and use cases, we
envision a mobile JavaTM platform built upon the more capable J2ME
CDC (Connected Device Configuration) standard. An ongoing activity,
MSA CDC (JSR 249), is currently defining a comprehensive platform
built around CDC technology (see next subsection for a brief summary
of the MSA CDC standardisation effort). In order to facilitate a transition
from JavaTM ME CDLC based platforms to JavaTM ME CDC based
platforms the OMTP JavaTM workstream has agreed upon a set of
requirements and recommendations. These requirements and
recommendations will be provided to the MSA CDC (JSR-249) expert
group. The responsibility for this smooth transition between the
platforms falls on the expert group of the MSA JSRs, the JavaTM

community, as well as the industry as a whole. f

Figure 1 illustrates our overall OMTP JavaTM platform vision. We
assume that the OMTP JavaTM platform shall be built around the MSA
CDC platform. This general architecture might also be considered as
mechanism to transition existing CLDC based platforms to CDC. In
addition, a number of new, additional APIs may have to be developed

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 10 of 44

in order to support the development of JavaTM-based system software
and resident applications in case the existing standards do not provide
the necessary capabilities.

Based on the use cases and requirements, we also assume that the
user interface capabilities of the OMTP JavaTM platform will have to be
more capable than those provided by the libraries used in the majority
of JavaTM-enabled mobile devices today. A key outcome of the OMTP
JavaTM Workstream activity will be the selection of a suitable user
interface library for the advanced JavaTM ME platform. The user
interface evaluation criteria and evaluation results will be summarized
later in this document.

Figure 1: OMTP JavaTM Platform Vision

3.1.1 MSA CDC (JSR 249)

The OMTP Java platform definition and requirements document
provides requirements and recommendations to the MSA (Mobile
Service Architecture) CDC Java platform, defined by the Java
Community Process effort JSR 249. MSA CDC is a standardization
effort that is currently defining a new, CDC-based JavaTM platform
targeted towards smartphones and other high-end mobile devices.
MSA CDC consists of a JavaTM virtual machine that is fully compliant
with the JavaTM Virtual Machine Specification and the J2SE virtual

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 11 of 44

machine, augmented with a large number of libraries that provide
significantly more functionality than the more limited MSA CLDC
platform.

The MSA CDC standardization effort is currently in progress, and the
details of the platform are still subject to change. For current
information on the MSA CDC platform, refer to the following JCP web
site:

http://www.jcp.org/en/jsr/detail?id=249

3.1.2 RELATIONSHIP TO MSA CLDC (JSR 248)

Most mobile devices today are built upon the J2ME CLDC (Connected
Limited Device Configuration) platform. The collective “umbrella”
standard that defines the set of most widely supported JavaTM APIs for
the J2ME CLDC platform is known as the JavaTM Technology for the
Wireless Industry (JTWI) initiative (JSR 185). JTWI devices are already
in widespread use in millions of devices, and there is a need for more
advanced capabilities and features.

The MSA CLDC standardization effort (JSR 248) is currently defining
the next generation mass-market mobile JavaTM platform based on the
existing JTWI standard. MSA CLDC is targeting high-volume, mass-
market devices, and it will provide a subset of the functionality offered
by the more capable MSA CDC platform.

For further information on the MSA CLDC platform, refer to the
following
JCP web site:

http://www.jcp.org/en/jsr/detail?id=248

3.2 BACKWARDS COMPATIBILITY

Backwards compatibility is a critical requirement for the successful
deployment and evolution of the JavaTM platform. The MSA CDC
platform will be a pure superset of the MSA CLDC platform, i.e., all the
content developed for the MSA CLDC platform will also run on MSA
CDC devices. Correspondingly, MSA CLDC devices must be able to
run existing JTWI and MIDP applications.

A key requirement in OMTP is to maintain the backwards compatibility
requirement with MSA and earlier versions of the JavaTM ME platform.
As a general principle, OMTP shall not define features that would
violate backwards compatibility with existing J2ME applications,
devices or standards, unless such features are specified in order to fix
serious incompatibilities between existing devices.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 12 of 44

4 IDENTIFIED GAP AREAS/REQUIREMENTS
Although OMTP is not specifying that all applications must be written
only in the JavaTM programming language, there are currently a number
of gaps in the available JavaTM APIs that prevent the preparation of a
complete set of phone applications or system software in the JavaTM

programming language. At present, many proprietary extensions are
required, and the specification of the JavaTM ME platform is not
sufficiently taking into account system issues and the needs of resident
system applications.

To support the OMTP Java workstream overall goal of defining a
compelling and complete platform which meets the needs of OMTP it is
also important to have a common understanding of the scope, features
as well as the inherent limitations of such an execution environment; in
terms of UI replacement/customization, execution and interrupt model
(non real time), security and access model. Having this in mind will also
ensure a successful adoption by developers and the market at large.
Specifically it is envisioned that OMTP JavaTM ME CDC will be
particular well suited to provide UI front-ends to existing end-user
applications exposing network services and device data such as
phonebook, bookmarks, messages etc. in a user friendly and highly
extensible and flexible way. It is fundamental that existing device
software can be tapped into from the OMTP JavaTM ME CDC in a fully
standards compliant and secure way while making optimal use of state
of the art device software that already have been certified for and
execute in existing mobile networks.

One of the key goals of the OMTP JavaTM Workstream was to identify
gap areas that prevent the industry from moving towards mobile
devices in which the majority of the resident applications and other
system components are written in the JavaTM programming language.
The approach followed by the OMTP JavaTM Workstream was to first
analyse the relevant gap areas, and then to identify – for each of the
gap areas – one or more existing JSR that can possibly fill or reduce
the gap. Liaison statements were sent out to existing/ongoing JSRs to
see if those activities could potentially cover the gaps as part of their
ongoing work.

The gap areas are summarized in detail in the sections below.

4.1 RUNTIME MANAGEMENT AND ISOLATION

4.1.1 PROBLEM DESCRIPTION

In a phone system that is written mainly in the JavaTM programming
language, some JavaTM applications will have the responsibility of
performing high-level runtime management of other applications.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 13 of 44

“Other applications” may be integral parts of the system, or extra
applications downloaded and installed by the user.

In the absence of effective runtime management, it could be possible
for an individual application to use an excessive amount of CPU time or
other resources, making it impossible to start up new applications (such
as the application to handle incoming phone calls.)

4.1.2 REQUIREMENTS

Given that the runtime management system may be written in the
JavaTM programming language, there must be a standardized JavaTM

mechanism for runtime management.

4.1.3 ACTIONS TAKEN

Liaison statements sent to

• JSR 121 (Isolation API)

• JSR 249 (MSA)

• JSR 271 (MIDP3)

4.1.4 RESULTS AND DECISIONS

Note that a new JSR (JSR 278 – Resource Management Framework)
is going to be start soon and will focus specifically on resource
management. This can potentially fill the gaps in the area of runtime
resource management of simultaneously running JavaTM applications.

Responses received from JSR 121 and JSR 271 are below:

(From Grzegorz Czajkowski, Sun) JSR 121: Thanks for your comments.
Indeed, they touch upon critical functionality, and before proposing this
specification we the issue of resource management was on the table.
However, bundling RM with isolation in one specification would inevitably
delay completing the JSR 121, and there are people for whom there is
significant value in Isolates alone. So the issue of resource management
won't be addressed in the JSR 121.

However, since the JSR 121 is rapidly approaching completion we (the
121 Expert Group) have started to talk about starting another JSR, this
time focused on resource management of J2SE applications. Is it
something you and/or your company would be interesting in participating
in?

(From Mike Milikich, Motorola) JSR 271 scope does not currently cover
the OMTP Group requirements as stated for runtime management and
application isolation. The JSR 271 EG is discussing fair application and
thread scheduling mechanisms to prevent a single program from denial of
service attacks, and we anticipate discussions about providing fair access
to other resources within the scope of a MIDP application environment.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 14 of 44

However, any runtime management API is not within the current scope
proposed for JSR 271.

Given this scope for MIDP3, it may be possible to use privileged MIDlets
to implement a platform wide AMS for Java as well as native applications.
But JSR 271 will not specify this as an inherent part of the AMS, nor will
any APIs be developed to include this functionality. JSR 271 will include
the following:

1. JSR-271 will define a method of inter-MIDlet communication.

2. JSR-271 will address the correct operation and management of
concurrent MIDlets, but will not include runtime management APIs for
control of other applications. As in past MIDP specifications, runtime
management functionality is within the domain of the AMS. Isolation of
objects between MIDlet suites will be part of what is required to support
concurrency.

3. Some additional consideration may be given to concurrency and
synchronization utilities, perhaps in the form of JSR 166 or some subset
therein.

4.2 FILE SYSTEM

4.2.1 PROBLEM DESCRIPTION

Java.io and the Generic Connection Framework file: mechanisms
provide general access to file systems. However, they do not provide
the detailed knowledge of how to use the file system in an integrated
way on a mobile device. For example, there is no standard way of
knowing where to save a sound file as a ring tone.

A possible resolution to this problem is to define properties for these
locations. Where an application wishes to save a particular data type
for system usage, it should lookup the property based on some criteria.
The criteria should include mime type, user (if the OMTP requirements
include support for multiple users, and if the device support multiple
users), and usage. This mechanism would allow multiple applications
to provide services for the same data.

4.2.2 REQUIREMENTS

There must be a standard way for a JavaTM application to identify
predefined file system locations.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 15 of 44

4.2.3 ACTIONS TAKEN

Liaison statement sent to

• JSR 249 (MSA)

4.2.4 RESULTS AND DECISIONS

According to the MSA expert group, this area will be covered by the
MSA Specifications. No further actions were deemed necessary by the
OMTP JavaTM Workstream during the last face to face meeting.
However it should be noted that the solution in the Public Review draft
of JSR-248 may be insufficient for the following reasons:

1. There should be support for multiple locations for storage of standard
types of content. For instance many devices allow storage in phone
memory as well as in memory cards.

2. The system property approach could be extended to define a path,
but this makes additional work for every application using the
properties.

3. Dealing with multiple locations for content and whether or not those
locations are currently “reachable” imposes a lot of overhead on
application code and fosters code duplication in applications. This
overhead could be dealt with much more efficiently by the system,
which could present to an application a unified view of what content
is currently available regardless of location, whether removable
storage is present or not, etc, together with events when the content
available changes due for example to changes in network
connectivity, removal of a storage card.

4. Lack of support of any metadata relating to the content (e.g. length of
music track) and the characteristics of the places where it is stored
(removable, persistent, temporary, secure etc) increases the burden
on applications.. It should be possible for an untrusted application to
get information about DRM protected content while not being able to
directly access the actual content. Also, applications should be able
to access metadata such as track length without having to be
intimately familiar with all of the corresponding file formats.

5. JSR-75 leaves the implementation of the security model for the file
system APIs up to the platform, so there is no standard way to define
what kinds of content (music, ring tones, images, etc) , and what kind
of access (read, write, create, delete) an application wants/should be
allowed access to, or any way for this to be visible to the user.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 16 of 44

4.3 APPLICATION META DATA

4.3.1 PROBLEM DESCRIPTION

Currently, there is no standardized application packaging solution for
J2ME CDC applications. The CLDC/MIDP platform provides a solution,
but it is not currently directly applicable to J2ME CDC.

Applications in are typically composed of the following elements:

• Application Binary: The application itself (the object code)

• Non-Code Resources: These include data required for the
operation of the application

 Images

 Resource bundles (for I18N)

 Data

 Application Meta Data (the data NOT fundamental to the
operation of the application, but perhaps useful in the
deployment of the application.)

Examples of Application Meta Data:

• Icon references

• Display Name of Application

• Supported MIME Types

• Versioning Information

• Application library dependencies

4.3.2 REQUIREMENTS

The application packaging solution should meet the following
requirements:

1. Meta Data SHOULD work with existing CDC application models

2. Meta Data SHOULD make use of JAR file manifest mechanism

3. Meta Data SHOULD provide pre-download properties (AKA JAD)

4. Meta Data SHOULD NOT be required to be provided with an
application

There already exist a number of specifications that provide support for
some of the features required to support Application Meta Data. Where

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 17 of 44

appropriate these facilities should be reused rather than inventing new
specifications.

4.3.3 ACTIONS TAKEN

Liaison statement sent to

• JSR 249 (MSA)

• JSR 271 (MIDP3)

4.3.4 RESULTS AND DECISIONS

Response received from the JSR 271 expert group is below:

(From Mike Milikich, Motorola) JSR 271 addresses the four requirements
mentioned above.

1. Meta Data SHOULD work with existing CDC application models MIDP3
specified meta data should have no conflicts when implemented on top of
CDC, although CDC will not be required.

2. Meta Data SHOULD make use of JAR file manifest mechanism
Guaranteed, for MIDP3 / MIDP2 backward compatibility.

3. Meta Data SHOULD provide pre-download properties (AKA JAD)
Guaranteed, for MIDP3 / MIDP2 backward compatibility.

4. Meta Data SHOULD NOT be required to be provided with an application
Guaranteed, for MIDP3 / MIDP2 backward compatibility.

Additionally, JSR-271 will revisit the split between descriptor and manifest,
since currently it is somewhat unclear as to which attributes should reside
in each. Furthermore, some MIDP2 required checks at installation
necessitate the download of the JAR, negating the benefits of separating
attributes into the descriptor.

4.4 PERSISTENT ALARMS

4.4.1 PROBLEM DESCRIPTION

The MIDP API provides the PushRegistry class but this does not
provide the flexibility to define an arbitrary number of time-based
alarms.

MIDP 2.0 has a suitable mechanism available, but it is currently limited
to specifying only one timer-based application launch at a time. CHAPI
could have been a place to do persistent alarms, but it’s based around
handling content rather than responding to timers.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 18 of 44

4.4.2 REQUIREMENTS

There must be a mechanism for programmatically specifying a time
when a particular application should be started. The number of timer-
based application launches should not be limited to just one at a time.

4.4.3 ACTIONS TAKEN

Liaison statements sent to

• JSR 249 (MSA)

• JSR 271 (MIDP3)

• JSR 232 (Mobile Operational Management).

4.4.4 RESULTS AND DECISIONS

Responses received from the JSR 232 and JSR 271 expert
groups are below:

(From Jon Bostrom, Nokia) JSR 232 provides a flexible event system by
means of which it is possible to issue events of different types and register
to be notified when given events occur. Each event has a topic and a set
of properties defined in terms of key-value pairs. When registering for
events one has to specify a topic and possibly a filter on the properties. In
particular the system is able to deal with timer events. These events have
org/osgi/timer as topic. The properties carried by each timer event
describe the year, month, day, hour, minute and second the timer event
occurred. The event system automatically issues timer events whenever
someone is registered for receiving one. As an example, if someone
registers for timer events specifying as filter

(& (hour=12) (minute=0) (second=0))

it will be notified everyday at noon.

Moreover JSR232 allows to request the scheduling of an application when
a specific event occurs if needed on a recurring basis. If the application is
not running when the event occurs, the framework automatically starts it.

The possibility of scheduling applications when given timer events occur
seems to provide the power and flexibility that OMTP requires in terms of
persistent alarms.

(From Mike Milikich, Motorola) JSR 271 will provide such a mechanism;
however, the proposed time format (yyyymm-dd hh:ss zone_offset) may
be problematic for some MIDP class mobile devices. Timezone
designations and / or the timezone offset from GMT are not consistently
known on devices. MIDP3 will address this area.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 19 of 44

Note that alarm based MIDlet launch is already provided within the MIDP2
APIs via dynamic registration. MIDP3 will investigate the addition of static
registration of alarm based application launch. Note that since alarm
based application launching may not be supported on all platforms, this
feature will likely remain optional in MIDP3.

With respect to the comment about MIDP3 linking MIDlets to a top level UI
window, th is is a l ready covered in MIDP2 us ing
Display.getDisplay(MIDlet) to make the binding. If a device supports a
window system, the implementation can use top level windows
appropriately; the

Display is the top level window for a MIDlet.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 20 of 44

4.5 SYSTEM INFORMATION AND NOTIFICATIONS

4.5.1 PROBLEM DESCRIPTION

In a mobile terminal there is a lot of information that, though being
made available by the underlying operating system, is not accessible
by JavaTM applications (at least not in a uniform way). Such information
includes, for instance, information related to network accounts or
information about installed and running applications. Accessing such
system information and system attributes is critical in enabling the
preparation of resident system applications entirely in the JavaTM

programming language.

4.5.2 REQUIREMENTS

1. A JavaTM application must be able to retrieve in a standard way all the
information included in Table 1.

2. A JavaTM application must be able to register in a standard way to be
notified about changes of all information marked with Yes in the
Listener column in Table 1.

3. A JavaTM application must be able to modify in a standard way all
information marked with Yes in the Modify column in Table 1.

Notes:

- The Type column in Table 1 contains a suggested type for the values
of a given element and is included mainly for clarification purposes.

- The mechanism for accessing the attributes and settings needs to be
aware of the underlying security practices, i.e., provide access to these
attributes and settings only if the application has the necessary
permissions to do so.

SYSTEM

ATTRIBUTE

DESCRIPTION AND USE CASE(S) FOR 2ND
 AND

3RD PARTY APPLICATIONS
TYPE LISTENER MODIFY

IDENTIFICATION

IMEI

Enables an application to identify the handset:

1. Billing purposes
2. Personalization
3. Statistics
4. QoS measurement String No No

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 21 of 44

SYSTEM

ATTRIBUTE

DESCRIPTION AND USE CASE(S) FOR 2ND
 AND

3RD PARTY APPLICATIONS
TYPE LISTENER MODIFY

IMSI

For SIM-based devices only. Enables an
application to identify the subscriber even if he
migrates to another handset:

1. Billing purposes
2. Personalization
3. Statistics
4. QoS measurement String No No

ICCID

For SIM-based devices only. For security,
some carriers prefer that applications identify
subscribers via ICCID instead of IMSI. String No No

Brand

Enables an application to identify the handset
brand:

1. Dynamic brand-specific customizations
2. Identification for Error Reporting String No No

Model

Enables an application to identify the handset
model:

1. Dynamic model-specific customizations
2. Identification for Error Reporting String No No

OS

Enables an application to identify the handset
OS:

1. Statistics (see comment about IMEI)
2. QoS measurements (see comment about
IMEI)
2. On-demand download of native code String No No

MOBILE NETWORK

Cell-ID

Enables an application to obtain the ID of the
current cell:
1. Activate diagnostic measurements in case a
problem is detected in a cell String

Yes:
Cell-ID
Changed No

RSSI level

Allows the application to know the signal
strength from the current cell:

1. Notification to the user
2. Enable diagnostic measurements in case a
problem is detected in a cell (see 9) Int

Yes:
RSSI level
changed No

Neighboring cell
RSSI

Enables an application to obtain the power
level of neighboring cells:

1. Support finer localization mechanism
implemented at the application level
2. Enable sophisticated cell relocation
processes in case of cell congestion

Array of cell-
ID, RSSI
level couples No No

Available network
accounts

Enable an application to retrieve network
accounts currently defined in the terminal

Array of
Objects
containing
the
parameters
below

Yes:
account
added/rem
oved

Yes: It must
be possible
to
create/delete
network
accounts

 - Account name The name of the network account String

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 22 of 44

SYSTEM

ATTRIBUTE

DESCRIPTION AND USE CASE(S) FOR 2ND
 AND

3RD PARTY APPLICATIONS
TYPE LISTENER MODIFY

 - Account APN The name of the APN for the account String

 - Bearer type
(GPRS, EDGE,
UMTS)

Enable an application to obtain the bearer type
for a given account String

Default network
account

Enable an application to obtain the name of the
current default network account String

Yes:
default
network
account
changed

Yes: it must
be possible
to set the
default
network
account

Active PDP
context(s)

Enables an application to obtain data about
the current active PDP contexts:

1. QoS measurements

Array of
Objects
containing
the
parameters
below:

Yes:
PDP
Context
opened/clo
sed

Yes: it must
be possible
to open a
PDPContext
using a given
network
account and
close an
active
PDPCOntext

 - Account-name
Enables an application to obtain the account
name for the selected active PDP context String

 - APN

Enables an application to obtain the APN name
for the selected active PDP context:

1. QoS measurements String

 - Bearer type
(GPRS, EDGE,
UMTS..)

Enables an application to obtain the bear type
for the selected PDP context:

1. QoS measurements String/int

 - Negotiated
parameters
(service class,
bandwidth..)

Enables an application to obtain negotiated
parameters for the selected PDP context:

1. Application can adjust behaviour to
accommodate negotiated parameters.

Properties/
Enumeration

 - TX and Rx
bytes

Enables an application to obtain the number of
bytes transmitted and received for the selected
PDP context:

1. Data for progress bars and/or meters

1. TX bytes
(int)
2. Rx bytes
(int)

APPLICATIONS

Installed
applications

Enables an application to obtain the list of all
applications currently installed in the device.
(BOTH native and Java, both preinstalled or
downloaded).

Array of
objects
containing
the
parameters
below

Yes: appl.
installed/
uninstalled
/updated

Yes: it must
be possible
to install/
uninstall/
update at
least Java
applications

 - Name String

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 23 of 44

SYSTEM

ATTRIBUTE

DESCRIPTION AND USE CASE(S) FOR 2ND
 AND

3RD PARTY APPLICATIONS
TYPE LISTENER MODIFY

 - Version String

 - Vendor String

Running
applications

Enables an application to obtain the list of all
applications currently running in the device

Array of
objects
containing
the
parameters
below

Yes: appl.
started/
stopped

Yes: it must
be possible
to start/stop
an instance
of a given
application

 - Instance ID

Unique identifier of the running instance (in
certain cases there may be two or more
instances of the same application running at
the same time on the same device) String

 - Appl name The name of the application that is running String

Foreground
application

The running application that is currently in
foreground

An object
containing
the
parameters
below

Yes:
foreground
application
changed

Yes: it must
be possible
to bring a
running
application in
foreground

 - Instance ID Unique identifier of the instance String

 - Appl name The name of the application that is running String

LOCAL NETWORK/
CONNECTIVITY

WiFi
on/off/unavailable

Enables an application to discover if WiFi
functionality is available and if it is on or off:

1. Allows application to adjust behaviour based
on WiFi Availability

int Fields:

Unavailable
Off
On

Yes:
WiFi state
changed No

Bluetooth
on/off/unavailable

Enables an application to discover if Bluetooth
functionality is available and if it is on or off:

1. Allows application to adjust behaviour based
on Bluetooth Availability

int Fields:

Unavailable
Off
On

Yes:
Bluetooth
state
changed No

IrDA
on/off/unavailable

Enables an application to discover if IrDA
functionality is available and if it is on or off:

1. Allows application to adjust behaviour based
on IrDA Availability

int Fields:

Unavailable
Off
On

Yes:
IrDA state
changed No

Data Cable
plugged/
unplugged/
unavailable

Enables an application to discover if a local
cable connection is available and if it is on or
off:

1. Allows application to adjust behaviour based
on local cable connection Availability

int Fields:

Disconnecte
d
Connected
Unavailable

Yes:
Cable
state
changed No

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 24 of 44

SYSTEM

ATTRIBUTE

DESCRIPTION AND USE CASE(S) FOR 2ND
 AND

3RD PARTY APPLICATIONS
TYPE LISTENER MODIFY

TELEPHONY

Number of Missed
Calls

Enables an application to obtain the number of
missed calls:

1. Allows an application to notify the user how
many calls they have missed. int

Yes:
Number of
missed
calls
changed No

Number of unread
messages

Enables an application to obtain the number of
unread messages:

1. Allows an application to notify the user how
many new messages they have. int

Yes:
Number of
unread
messages
changed No

MMI

Battery level
Enables the application to inquire the current
battery level of the device. int No No

Main Display
on/off

Enables an application to know if the main
display is switched on or off

1. Allows application to adjust behaviour (i.e.
stop drawing to the screen)?
2. Enables the application to request the
display is switched on?

int Fields:

Off
On

Yes:
Main
display
state
changed No

Sub Display
on/off/unavailable

Enables an application to know if the sub
display is switched on or off

1. Allows application to adjust behaviour (i.e.
stop drawing to the screen)?
2. Enables the application to request the
display is switched on?

int Fields:

Off
On

Yes:
Sub-
display
state
changed No

Display focus

Enables an application to know which display
is currently in focus:

1. Application can optimize drawing
accordingly

int Fields

Main
Sub

Yes:
Display
focus
changed No

Keylock
on/off/unavailable

Enables an application to know if the keypad is
disabled

1. Behaviour change - (e.g. Demo mode v
interactive mode)
1. Notification to the user.

int Fields:

Off
On

Yes:
Keylock
status
changed No

Table 1. System information

4.5.3 ACTIONS TAKEN

Liaison statements sent to

• JSR 249 (MSA)

• JSR 232 (Mobile Operational Management).

• JSR 253 (Mobile Telephony API)

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 25 of 44

• JSR 256 (Sensor API)

4.5.4 RESULTS AND DECISIONS

The responses received from the JSR 232 and JSR 253 efforts are
below:

(From Jon Bostrom, Nokia) JSR 232 seems to have the mechanisms in
place that you are requesting in terms of information retrieval, notification
and modification. These include

• A flexible and extensible event system. This event system provides
the capability to define new event types in a predictable format. JSR
232 is currently working to define a core set of events and will review
your requests in that area to account and then notify you. JSR 232 will
also publish, as part of the spec, the format for the events which will
allow other parties to use that definition to create new event types that
meet their specific needs. OMTP will therefore be able to encourage
other bodies to use the same format to define events that will
eventually not be included in the JSR 232 core set.

• A generic API for accessing the DMT (Device Management Tree) and
a set of predefined management objects for operational management
some of which can be used to retrieve and modify system
information. Concerning this point however the relation between the
JSR 232 and the JSR 246 (Device Management API for CLDC), that
is focusing on similar aspects for CLDC devices, still has to be
clarified.

(From ekaterina.chtcherbina@siemens.com) JSR 253 will not provide
mechanisms to retrieve the number of missed calls and unread
messages. However, although the primary goal of the JSR 253 is to
handle calls and supplementary services, a very basic support of getting
network information is also provided. Therefore, some of features
mentioned in OMTP requirements for Mobile Network are also covered.
Thus, for example, application can require which bearers are currently
available (e.g. UMTS, GSM, CDMA or any other which could be related to
telephony). If bearer becomes unavailable then application will receive a
notification if an appropriate listener is registered. The same way, if quality
of coverage changes (e.g. full coverage, limited coverage, out of
coverage), then application will get a notification. Application can query
the default bearer for telephony, e.g. if no specific bearer is chosen what
would be the default one. Application can also receive the name of
servicing network (provider name) as a string and notification if servicing
network has been changed. However, application cannot change any
network settings using JSR 253.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 26 of 44

4.6 DIGITAL RIGHTS MANAGEMENT

4.6.1 PROBLEM

Digital Rights Management (DRM) refers to the mechanisms used on a
computing device to protect digital content from unauthorized use. For
instance, DRM technology can be used to control unauthorized copying
of digital music or video content. There a number of mechanisms that
have been developed and are in use today by various service providers
and electronics manufacturers. Despite the growing use of this
technology, there has not yet been defined a JavaTM programming
interface that allows a JavaTM application to in any way control
protected content.

4.6.2 REQUIREMENTS

The requirements for DRM have not been discussed formally in this
workstream so this section should be considered as an outline for a
more formal discussion on this topic.

A JavaTM programming interface for DRM should include support for the
basic functions of DRM, querying and changing the policy of content,
querying and changing the state of content, and perhaps other
functions. Any API should be DRM standard agnostic such that the API
could be successfully implemented on any of the commonly used DRM
schemes in used today.

4.6.3 ACTIONS TAKEN

This document has been edited to include this new section.

4.6.4 RESULTS

This topic should be discussed within the workgroup to determine if
there is enough interest to include it more formally in this document.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 27 of 44

5 NEXT STEPS

Based on the responses received to the liaison statements, it seems
that the gap areas identified by the OMTP JavaTM Workstream will not
all be covered sufficiently by the forthcoming JavaTM platform standards
and that there is a need to initiate new JCP efforts or other
standardization activities at least in the area of System Information and
Notification. The information exchange with the ongoing
standardization activities will still continue in order to ensure that all the
details mentioned in the previous chapter will be covered adequately.

The list below summarizes the possible action items for the remaining
OMTP JavaTM Workstream activities:

• Compose a revised liaison statement to JSR 253 in order to
ensure complete feature coverage in the area of system
information.

• Compose a new liaison statement to JSR 246 (Device
Management) in order to ensure the effective exchange of
information between JSR 246 and OMTP JavaTM Workstream.

• Compose a new liaison statement to JSR 278 (Resource
Management) in order to ensure that this new JSR will take the
OMTP requirements into account during its work.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 28 of 44

6 APPENDIX 1: UI TECHNOLOGIES - EVALUATION

CRITERIA & RESULTS

6.1 OVERVIEW

This chapter has been prepared to identify the criteria to effectively
evaluate two possible user interface technologies for the advanced
JavaTM ME platform: JSR 209 and eSWT. The results presented here
are based on the UI Evaluation Task Force initiated by the OMTP
JavaTM Workstream.

Note: The UI Technologies evaluation included in this revision of the
OMTP Definition and Requirements document includes analyses of
JSR-209 and eSWT. It has been noted that other JavaTM ME UI toolkit
specifications may allow implementation on the CDC specification.
Further analysis of these technologies should be considered when their
specifications become publicly available. The following JSR’s were
mentioned in face to face meetings of the OMTP JavaTM Workstream
JSR-258 (Mobile User Interface Customization API) and JSR-271
(Mobile Information Device Profile 3) although this list should not be
considered exclusive of other technologies. The OMTP JavaTM

Workstream will determine which technologies they find relevant.

6.2 EVALUATION BASED ON OMTP UI CUSTOMIZATION USE CASES

The OMTP Board has approved a collection of use cases related to the
customization of mobile terminals by an operator. They relate to some
aspects of the evaluation of UI Technologies. The following use cases
are included in this document for informative purposes.

USE CASE DEFINITION

4A: ADD BASIC BRANDING

ELEMENTS

• Brand basic elements of a terminal UI in a consistent manner across
all terminals, OTA updates possible

• E.g., background, menu items, wallpapers, colour scheme, start-
up/shutdown sequences, ring tones, logo, screensaver, etc.

4B: SIMPLE LOOK AND FEEL

CUSTOMISATION

• Customise simple look and feel aspects of a terminal UI in a
consistent manner across all terminals, OTA updates possible

• E.g., splash screens, sounds, status indicators, animations, soft key
area, etc. plus level 4A elements

4C: DEEP LOOK AND FEEL

CUSTOMISATION

• Define the look and feel of all UI components and their layout in a
consistent manner across all terminals and all applications, OTA
updates possible

• E.g., scroll bar, text entry boxes, buttons, list boxes, notifications,
etc. plus level 4B

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 29 of 44

4D: BASIC MENU

CUSTOMISATION

• Customise the ordering and labelling of the device menu structure
and define device shortcuts and soft-keys, OTA updates possible

• E.g., emphasise and prioritise terminal features, lock specific menu
items, define idle screen shortcuts, etc

4E: SIMPLE APPLICATION

INTEGRATION

• Define the structure of the menu of a terminal UI across all
terminals, including the addition of links to operator applications and
services. OTA possible

• E.g., add an offline operator menu structure, access operator
application from idle screen, plus 4D

4F: APPLICATION

INTERWORKING CUSTOMISATION

• Customise the structure of Application Interworking Workflows
across all terminals to define a seamless integration. OTA possible

• E.g. define application interworking workflows (AIW), plus 4E

The following table represents an evaluation of JSR-209 and eSWT
based on the use case definitions described above. This evaluation is
based on the features actually specified in the specifications listed not
in any of the underlying technologies, which may be used to support
their implementations.

USE CASE JSR-209 ESWT

4A: ADD BASIC BRANDING

ELEMENTS

No direct support, could be
supported by an implementation of
Pluggable Look and Feel APIs.

eSWT relies on the native toolkit for
appearance of the visual elements of
a terminal’s interface. As such, there
is no functionality included in the
eSWT specification that addresses
this use case.

4B: SIMPLE LOOK AND FEEL

CUSTOMISATION

JSR-209 is technology that could be
used to implement the entire UI of
the terminal but as an enabling
technology does not specifically
address this use case.

eSWT is technology that could be
used to implement the entire UI of the
terminal but as an enabling
technology does not specifically
address this use case.

4C: DEEP LOOK AND FEEL

CUSTOMISATION

Support via the Pluggable Look and
Feel APIs.

This use case is specifically NOT
addressed by eSWT.

4D: BASIC MENU

CUSTOMISATION

JSR-209 provides the facilities to
manipulate and customize menus
as described in the use case,
however these features and how
they relate to the operation of the
terminal are out of scope for JSR-
209.

eSWT provides the facilities to
manipulate and customize menus as
described in the use case, however
these features and how they relate to
the operation of the terminal are out of
scope for eSWT.

4E: SIMPLE APPLICATION

INTEGRATION

These features are out of scope for
any user interface toolkit although
terminal software could be
implemented with JSR-209 to
support this use case.

These features are out of scope for
any user interface toolkit although
terminal software could be
implemented with eSWT to support
this use case.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 30 of 44

4F: APPLICATION INTERWORKING

CUSTOMISATION

These features are out of scope for
any user interface toolkit although
terminal software could be
implemented with JSR-209 to
support this use case.

These features are out of scope for
any user interface toolkit although
terminal software could be
implemented with eSWT to support
this use case.

Notes: Some of the features described in requirements 4a, 4b, 4d, 4e,
and 4f may be supported in JSR-258 however no publicly available
specification was available to evaluate it. JSR-258 specifically
mentions support for JSR-209 but it may also be applicable to eSWT.

6.3 EVALUATION CRITERIA

The table below summarizes the evaluation criteria that were
developed by the OMTP JavaTM Workstream in order to compare JavaTM

UI toolkits in an objective fashion.

CATEGORY CRITERION DESCRIPTION JUSTIFICATION

INTRINSIC

CAPABILITY

Functionality This criterion covers the richness and
completeness of functionality
presented to the application
programmer and UI writer.

Completeness is assessed in the
context of the projected typical UI
requirements of target devices within
the OMTP target timescale.

One of the reasons for requiring a
new UI/graphics platform API to
supplement/supersede lcdui is
the requirement for greater
functionality.

Flexibility This criterion covers the intrinsic
flexibility of the framework and API,
both from the point of view of the
application programmer and UI writer.
Flexibility is taken to mean the ability
of the framework to accommodate a
wide range of differing requirements
without requiring extension on the
framework or undue upheaval

One of the reasons for requiring a
new UI/graphics platform API to
supplement/supersede lcdui is
the requirement for greater
flexibility.

ENGINEERING

COMPATIBILITY

Footprint
requirements

The footprint requirements of the
solution, taking into account both
code size and runtime memory
requirements (native and Java if
necessary).

In order to be deployable to as
many devices as possible,
smaller footprint solutions are
preferred.

Processing
requirements

The CPU processing requirements of
the solution. This is assessed in the
context of the projected typical UI
requirements of target devices within
the OMTP target timescale.

In order to be deployable to as
many devices as possible,
solutions that are less processor-
intensive are preferred.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 31 of 44

CATEGORY CRITERION DESCRIPTION JUSTIFICATION

Implementation
feasibility/cost

The implementation expense and time
taken of creating and validating a
solution, taking into account the
creation of the libraries themselves
and any necessary underlying
extensions to the native platform or
UI.

In order to be practicably
deployable to as many devices
as possible, solutions that are
deployable with sooner and with
lower engineering cost are
preferred.

Availability of
implementation
s for different
platforms

Are implementations of the solution
available currently or in line with the
OMTP Roadmap? For how many
platforms relevant for mobile terminals
(and others) these implementations
have been implemented on / ported
to?

Availability of implementations on
different platforms relevant for
mobile terminals (and others)
gives assurance that the solution
is feasible and implementable on
those platforms with reasonable
effort.

Availability of
Compatibility/
Conformance
Tests

Do implementations include a
regimented and complete set of
conformance tests based on a
framework familiar to platform
developers.

Compatibility testing ensures that
implementations from different
vendors interoperate. The suite of
tests used to test a platform
should be comprehensive
(adequately test the breadth of
the API) and integrate well with
other tests required by the
platform.

RELEVANCE TO

OMTP
OBJECTIVES

Specification
fragmentation

The degree to which the
technology/standard fragments the
device API/profile landscape (or risks
future fragmentation).

Specific relevant sub-criteria are:

compatibility with CLDC
implementations

compatibility with lcdui
implementations

ability for the API to scale across
multiple device tiers

compatibility with other OMTP groups

As well as “API fragmentation” (where
different devices support different
APIs) the framework should be
assessed in terms of “variant
fragmentation” (where multiple
implementations of an application are
required for different devices or
device variants, even when those
variants ostensibly implement the
same API and profiles).

A key aim of the OMTP is to
enhance the consistency of user
experience and enhance
application programmability by
reducing fragmentation in
platform APIs and profiles and
device variants.

Specification
Maturity

The degree to which the underlying
specification has been available in the
market and allowed developer
feedback to improve it’s general
quality.

There is a risk associated with
the introduction of any new
technology. As much as possible
we should rely on technologies
that have allowed application
developers a significant amount
of “seat time” to identify areas for
improvement in the specification.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 32 of 44

CATEGORY CRITERION DESCRIPTION JUSTIFICATION

Application
portability

The degree to which client and/or
application software can be written
that can successfully migrate from
one implementation of the standard to
another.

This is strongly determined by the
completeness and level of ambiguity
in the specification.

The standard must allow for
independent implementations. A
specification proven to support
multiple independent
implementations is preferred.

Form factor
portability

This is the degree to which the
framework supports the creation of
applications that can be portable
across multiple disparate form factors
and input systems.

This is determined by a wide range of
issues, including:

versatility and generality of navigation
and traversal model to support
different input systems;

availability of appropriately high level
UI abstractions in addition to only
components/widgets and low level
interaction system

suitability of available UI components
to phone input systems, especially
without pointer device

flexibility of the UI framework to allow
developers to easily create portable
custom components

The standard must preserve the
application writer’s ability to
target multiple form factors and
input systems. Ideally the form
factor portability should be
superior to that of lcdui. Poor
form factor portability will
contribute to fragmentation.

Support for
modification of
LAF

This is the degree to which the
framework supports the modification
of the look and feel of a platform UI,
and the ability for applications to be
portable across disparate LAF
implementations/behaviours

A key requirement of OMTP is to
maximise the uniformity of
technology implementations
whilst permitting operator-specific
customisations to be deployed. It
is important that those
customisations do not contribute
to variant fragmentation.

Suitability for
mixed terminal
s/w
architectures –
Consistency of
the LAF across
the whole
device

This is the suitability of the framework
to coexist with other UI technology
elements on devices that support
multiple content execution
environments (e.g. native as well as
Java).

In the event that there are multiple
environments, frameworks should be
assessed according to the degree to
which consistency of LAF is achieved
across those environments.

OMTP’s desire is to maximise the
consistency of user experience
and it is believed that this should
be achievable on platforms that
support mixed terminal s/w
architectures

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 33 of 44

CATEGORY CRITERION DESCRIPTION JUSTIFICATION

Suitability for
mixed terminal
s/w
architectures –
Customisation
of the LAF
across the
whole device

This is the suitability of the framework
to coexist with other UI technology
elements on devices that support
multiple content execution
environments (e.g. native as well as
Java).

How does the solution allow the
customisation of the whole device
LAF in a consistent way?

OMTP’s desire is to maximise the
consistency of user experience
and it is believed that this should
be achievable on platforms that
support mixed terminal s/w
architectures. Also the
customisation technology must
allow customising the whole
device in a consistent way.

Portability of
LAF

This is the ease with which LAF
implementations or customisations
are migrated from one implementation
of the framework to another.

OMTP’s aim is to reduce the cost
of achieving operator-specific
customisations, and this is
reduced if the same
customisations can be
redeployed across
implementations from multiple
manufacturers.

Consistency of
LAF across
devices

ABC

This is the consistency of LAF
implementations or customisations
across different devices

OMTP’s aim is to achieve
consistent implementations of an
operator LAF across devices,
including devices from different
manufacturers

Familiarity to
developer
community

This is the degree to which the
framework is already familiar to the
developer community. Some of the
criteria to be considered are:

Size of the developer community

Consistency with the Java
programming paradigms

Number of commercial applications

Availability of tools

A framework is preferred if it is
more readily accessible to the
developer community.

PROCESS Standardisation
process

This is the extent to which the
standardisation process for the
framework is compatible with OMTP
objectives

OMTP must be satisfied that the
process for definition,
maintenance and enforcement of
the standard is workable.

Maturity/
timescale

This is the extent to which the
remaining standardisation work is
compatible with OMTP timescales.

OMTP must be satisfied that the
standard can be adopted and
achieve its objectives within the
required timescales.

Licensing What kind of licensing terms these
implementations have?

OMTP should ensure that the
technology is available on
predictable and reasonable

licensing terms.

6.4 EVALUATION RESULTS

The table below summarizes the actual JSR 209 vs. eSWT evaluation
results based on the criteria presented in the section above.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 34 of 44

CATEGORY CRITERION JSR 209 ESWT

INTRINSIC

CAPABILITY

Functionality List of JSR 209 UI Components:
JButton
JCheckBox
JCheckBoxMenuItem
JColorChooser
JComboBox
JComponent
JDesktopPane
JDialog
JEditorPane
JFileChooser
JFormattedTextField
JFormattedTextField.AbstractForm
atter
JFormattedTextField.AbstractForm
atterFactory
JFrame
JInternalFrame
JInternalFrame.JDesktopIcon
JLabel
JLayeredPane
JList
JMenu
JMenuBar
JMenuItem
JOptionPane
JPanel
JPasswordField
JPopupMenu
JProgressBar
JRadioButton
JRadioButtonMenuItem
JRootPane
JScrollBar
JScrollPane
JSlider
JSpinner
JSpinner.DateEditor
JSpinner.DefaultEditor
JSpinner.ListEditor
JSpinner.NumberEditor
JTabbedPane
JTable
JTextArea
JTextField
JTextPane
JToggleButton
JToggleButton.ToggleButtonMo
del
JToolTip
JViewport
JWindow

List of eSWT UI Components:
Button
Canvas
ColorDialog
Combo
Composite
Control
Dialog
DirectoryDialog
FileDialog
FontDialog
Item
Label
List
Menu
MenuItem
MessageBox
ProgressBar
Scrollable
ScrollBar
Shell
Slider
Table
TableColumn
TableItem
Text
Tree
TreeItem

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 35 of 44

CATEGORY CRITERION JSR 209 ESWT

Functionality 2D Rendering APIs:

Paint
PaintContext
Shape
Stroke
GradientPaint
RenderingHints
RenderingHints.Key
TexturePaint
AffineTransform
Arc2D
Arc2D.Float
Area
CubicCurve2D
CubicCurve2D.Float
Dimension2D
Ellipse2D
Ellipse2D.Float
FlatteningPathIterator
GeneralPath
Line2D
Line2D.Float
Point2D
Point2D.Float
QuadCurve2D
Rectangle2D
RectangularShape
RoundRectangle2D
BufferedImageOp
RasterOp
RenderedImage
AffineTransformOp
BufferedImage
ColorModel
ConvolveOp
DataBuffer
DataBufferInt
Kernel
LookupOp
LookupTable
PackedColorModel
Raster
RescaleOp
SampleModel
SinglePixelPackedSampleModel
WritableRaster
IIOParamController
Classes
IIOParam
ImageIO
ImageWriter
ImageReader
ImageReadParam
ImageTypeSpecifier
ImageWriteParam

2D Rendering API:

Color
Device
Font
FontData
FontMetrics
GC
Image
ImageData
ImageLoader
PaletteData
Point
Rectangle
Resource
RGB

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 36 of 44

CATEGORY CRITERION JSR 209 ESWT

Flexibility JSR 209 and the Swing and Java
2D frameworks that they are based
on have been designed from the
beginning to provide a very high
degree of platform independence
and advanced features for
developers. In particular the
following aspects of the
specification should be noted:

The Swing specification provides a
framework allowing platform
independent implementations of a
UI toolkit

The Swing specification (and JSR
209) allows a high level of platform
customization in the form of
pluggable look and feel
infrastructure. This will allow both
the behaviour and appearance of
the UI to be customized on a
device (allowing a consistent look
and feel across devices from
different manufacturers as
required).

The pluggable look and feel
framework can also be used to
integrate with a native toolkit to
provide a native look and feel
(using native rendering libraries) to
provide fidelity with native
applications (as required)

The Java 2D rendering API allows
Java devices to take advantage of
the most advanced rendering
capabilities available on devices
today.

The goal of the SWT project was
to provide a UI toolkit for the
Eclipse IDE that was tightly
coupled with the native toolkit.
This philosophy allows the
implementer of the toolkit to very
tightly bind an SWT
implementation to a native toolkit
including support for platform
specific features.
(http://www.eclipse.org/rcp/)
Only the customization provided
by the native toolkit is supported
by SWT. An implementation can
only include the look and feel
provided natively by the device.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 37 of 44

CATEGORY CRITERION JSR 209 ESWT

ENGINEERING

COMPATIBILITY

Footprint
requirements

Varies based on whether Swing
implementation is built in the Java
programming language or a native
toolkit.

Varies based on whether Swing
implementation is built in the Java
programming language or a native
toolkit. Native toolkit
implementations can be the same
or smaller than an equivalent SWT
implementation. Java Swing
implementation would include
functionality included in eJFace
(and not part of core eSWT).

Varies depending on the native
toolkit, target size for the binding
layer is approximately 150k

Most of eSWT covered by
existing native code Additional
widgets may be implemented by
native or Java.

Target size is 300-500k (Taken
from v 0.9.2 of eSWT HLA):

· Core eSWT– 300k

· Expanded eSWT – 200k

· Mobile Extensions – 200k

Note that these numbers do not
include eJFace which

would be required for functionality
parity with JSR 209.

Processing
requirements

Optimized for mobile phones. Optimized for mobile phones.

Availability of
implementations
for different
platforms

Not yet announced. MS Windows, MS Windows
Mobile, and Nokia Series 80.

Availability of
Compatibility/
Conformance
Tests

Conformance tests will be based
on the J2SE conformance tests.
These tests have been developed
and released on multiple releases
of J2SE and adapted to JSR 209.
They will be released when JSR
209 is released.

Compatibility tests will be
available from the Eclipse project.
They have been developed
specifically for eSWT and will be
released for the first time with
eSWT.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 38 of 44

CATEGORY CRITERION JSR 209 ESWT

RELEVANCE TO

OMTP
OBJECTIVES

Specification
fragmentation

JSR 209 is intended to leverage the
millions of developers and tools
currently targeting J2SE and J2EE.
The Swing and Java 2D APIs which
JSR 209 is based on represent the
largest segment of the Java
Developer Community. Providing
an API familiar to these developers
will provide operators with
increased availability of compelling
content for the mobile platform.

JSR 209 is targeted at mid-Tier
devices and is intended to provide
advanced graphics and UI support
to developers. There is no intention
in allowing direct compatibility with
LCDUI implementation, however
integration of JSR 209 and LCDUI
implementations has been
demonstrated.

The JSR 209 can only be
supported on CDC platforms.

ESWT is based on the SWT APIs
which have had some limited
notoriety in the industry. Its
design is focused around
providing a Java binding to a
native toolkit.

ESWT is only supported on CDC
platforms. (Note: From eSWT
specification overview, “eSWT
provides a core UI API that Java
applications can rely on and can
be used in any application
models or architectures that have
support for full Java VM
specification.” (CLDC is not a full
Java VM)

Specification
Maturity

The JSR 209 specification is based
on the J2SE Swing API’s which
have been developed and refined
since 1997. They have been
developed to insulate the developer
from the details of the underlying
operating environment and allow
the production of portable
applications.

SWT was first introduced in 2001
as part of the Eclipse IDE project.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 39 of 44

CATEGORY CRITERION JSR 209 ESWT

Application
portability

The Swing platform was developed
to provide a high degree of
application portability.

For instance, focus management is
consistent across implementations
of Swing on different platforms.

Although application portability is
important to the SWT platform,
the authors of SWT make clear
that developers can not depend
on the platform to provide a
dependable level of cross
platform consistency and this is
noted as part of the design of the
SWT framework. “developers
need to understand that
applications can potentially
behave differently to match the
operating system behaviour”
(from
http://dev.eclipse.org/viewcvs/
index.cgi/platform-swt-
home/main.html?rev=1.11)

The SWT design allows
implementations to compensate
for different behaviour in the
underlying toolkit. For instance,
some toolkits may automatically
set the focus of a UI component
on a particular platform and
generate an event to indicate this
to the application.

Nokia does not agree with this
wording, however it represents
content from the Eclipse project
website.

Support for
modification of
LAF

The JSR 209 EG has reconsidered
including support for PLAF APIs as
per a request from the OMTP Java
WS. A first revision of the PLAF
APIs appeared in the Public
Review version of the JSR 209
specification recently approved by
the Java Community Process.

ESWT depends on the underlying
UI toolkit to define the look and
feel of the UI.

Suitability for
mixed terminal
s/w architectures
– Consistency of
the LAF across
the whole device

The look and feel of the JSR 209
toolkit is subject to the
implementation of the look an feel.

ESWT only allows for the native
look and feel to be supported.

Suitability for
mixed terminal
s/w architectures
– Customisation
of the LAF
across the whole
device

As supported by a look and feel
implementation.

Only as supported by the native
toolkit.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 40 of 44

CATEGORY CRITERION JSR 209 ESWT

Portability of LAF A Look and Feel can implemented
in the Java Programming language
which would allow a consistent look
and feel across devices from
different manufacturers.

The Swing architecture allows for a
LaF to be defined separately from
the toolkit implementation. Although
not currently part of the public JSR
209 API, a look and feel could be
constructed that represented a
particular brand or company and
then be deployed on any
appropriately implemented JSR
209 platform regardless of the
underlying operating system or UI
toolkit. The "Metal" look and feel
which is included in J2SE is a
toolkit independent look and feel
deployed with all J2SE platforms
(Windows, Mac, Linux, Solaris,
etc).

In summary:

1. The UI can be independent of
the native widget-set, therefore the
Java LaF may be different form the
native LaF on the terminal (this is
an implementation detail).

2. The UI will be consistent across
all Java applications, but not
necessarily between native and
Java applications (this is an
implementation detail).

3. JSR 209 Public Review Draft
includes support for pluggable look
and feel.

If custom widgets are used, they
will provide the same LaF
regardless of the device being
used (as long as each device
uses the same native toolkit).
eSWT APIs will be tightly
specified to ensure consistent
behaviour across different
platforms implementations
(however the SWT architecture
allows for platform differences to
be exposed to applications).

Native side and all Java UI
toolkits in a technology agnostic
way through JSR 258. Results
into operator LaF on the whole
device and into the possibility to
combine native and Java
applications in an optimised way.

JSR 258 when completed may
provide some level of UI skinning
of a native toolkit.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 41 of 44

CATEGORY CRITERION JSR 209 ESWT

Consistency of
LAF across
devices

JSR 209 is based on the "Swing"
user interface toolkit.

The Swing toolkit was designed to
allow the implementation of a User
Interface toolkit entirely in the Java
Programming Language. JSR 209
has tightened the Swing portion of
the specification in a way that
allows JSR 209 to be implemented
both on a native toolkit or in the
Java Programming Language.

In the case where JSR 209 is
implemented in the Java
Programming Language, the
implementation of the toolkit Look
and Feel is entirely defined by the
implementation of the specification
and not the underlying toolkit.(Java
UI implementation)

If JSR 209 is implemented with a
native look and feel, the native
toolkit provides the look and feel
capabilities. Therefore
independence from the underlying
widgets can only be guaranteed by
JSR 209 when a Java Look and
Feel is used.

SWT's architecture provides a
thin layer around the native toolkit
and retains only the look of the
native toolkit. From eclipse.org
"The Standard Widget Toolkit
(SWT) is a widget toolkit for Java
developers that provides a
portable API and tight integration
with the underlying native OS
GUI platform." In other words, the
underlying native toolkit will
provides the Look and Feel
capabilities so they can not be
independent.

If standard widgets are used,
eSWT applications will inherit the
LaF that is appropriate for the
device, thereby providing a user
experience that blends with
native applications. However, an
eSWT may choose to create
custom widgets that provide a
specific LaF independent of the
underlying toolkit.

eSWT can be implemented with
pure-Java in the same fashion as
Swing. So if a eSWT
implementation is done so that
LAF is wanted to be different than
th native implementation then it's
of course possible and eSWT can
have whatever LAF needed.
Often, however, this is not a
desirable implementation as it
gives user non-unified user
experience of a device with the
rest of the device UIs.

Familiarity to
developer
community

The Swing UI toolkit from which
JSR 209 is based has been used
to develop hundreds of commercial
applications many of which are
listed here:
http://java.sun.com/products/jfc/tsc/
sightings/index.html

Few commercial applications
have been developed for SWT.

PROCESS Standardisation
process

The wireless industry standard
process for the development of
Java programming interfaces, the
Java Community Process. The
current JSR 209 specification effort
includes software platform
providers, OEMs, and operators.

The open source community
through the Eclipse project.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 42 of 44

CATEGORY CRITERION JSR 209 ESWT

Maturity/

timescale

Swing was first released in 1997 as
part of JDK 1.2 and refined in JDK
1.3, and JDK 1.4. JSR 209 was
initially approved by the Java
Community Process in March 2003.
Development continues with input
from the Java Community and will
complete before the end of the
year.

SWT was introduced as an open
source project in 2001 and the
eSWT project began sometime in
2004.

Licensing Information on licensing can be
found on the JCP website:
http://www.jcp.org/en/jsr/detail?id=2
09

Eclipse Projects are typically
licensed under the “Common
Public License”

Note: As stated in the Overview of this section, the OMTP JavaTM

workstream agreed only to consider technologies described in publicly
available specifications. When discussed in the last face to face
meeting, the JSR 258 specification was not yet publicly available. The
planned features of JSR 258 may possibly enhance the ability to
customize mobile terminals, and as stated in the JSR text will be
compatible with JSR 209 and potentially eSWT as well.

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 43 of 44

7 ABBREVIATIONS

ABBREVIATION DESCRIPTION

3GPP 3rd Generation Partnership Project

OMTP Open Mobile Terminal Platform

OTA Over The Air

WAP Wireless Application Protocol

JCP JavaTM Community Process

JSR JavaTM Specification Request

CDC Connected Device Configuration

CLDC Connected Limited Device Configuration

MIDP Mobile Information Device Profile

JAVA
TM

 ME JavaTM Micro Edition

JAVA
TM

 SE JavaTM Standard Edition

MSA Mobile Service Architecture

OMTP JAVATM
 WITH FOCUS ON CDC

© 2006 OMTP Ltd. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Ltd.

Page 44 of 44

8 REFERENCED DOCUMENTS

NO. DOCUMENT AUTHOR DATE

1 RFC2119
(http://rfc.net/rfc2119.html)

RFC March 1997

