

OMTP PUBLISHED

OMTP

SECURITY THREATS ON EMBEDDED

CONSUMER DEVICES

VERSION: v1.1

STATUS: Approved for Publication

DATE OF

PUBLICATION:
28th May 2009

OWNER: OMTP Limited

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 2 of 50 OMTP PUBLISHED

CONTENTS

1 INTRODUCTION ... 6

1.1 DOCUMENT PURPOSE ... 6

1.2 INTENDED AUDIENCE .. 6

1.3 REQUIRED EXPERTISE .. 7

1.4 EASE OF REPEAT ... 7

1.5 EASE OF DISTRIBUTION ... 7

1.6 THREATS CLASSIFICATION ... 8

2 THREATS SUMMARY.. 10

2.1 SOFTWARE MODIFICATION THREATS (T.SWM.XXX) 10

2.2 SOFTWARE OPPORTUNISTIC THREATS (T.SWO.XXX) 10

2.3 HARDWARE THREATS – EXTERNAL (T.HWE.XXX) 12

2.4 HARDWARE THREATS – TERMINAL INTRUSIVE (T.HWT.XXX) ... 12

2.5 HARDWARE THREATS – COMPONENT INVASIVE (T.HWC.XXX) 13

2.6 HARDWARE CLONING, COMPONENT REPLACEMENT OR

COMPONENT ADDITION THREATS (T.CLO.XXX) 14

3 TOOLS IN THE ARMOURY TO STOP THE HACKER 15

3.1 PRIVILEGED CODE AND ITS ROLE IN GUARDING SECRETS 15

3.2 APIS AND SECURITY ... 15

3.3 TYPE-SAFETY .. 15

3.4 SECURITY DOMAINS .. 16

3.5 SECURITY CRITICAL ASSETS VS NON-CRITICAL ASSETS 16

3.6 INTEGRITY CHECKING ... 17

3.7 SECURE BOOT ... 19

4 THREATS DETAILS .. 20

4.1 SOFTWARE MODIFICATION THREATS (T.SWM.XXX) 20

T.SWM.001 Attack via faulty privileged code extensions (e.g. drivers) ... 20

T.SWM.002 Attack via illegal privileged code extensions (drivers) 20
T.SWM.003 Unauthorised re-flash of device through FOTA 21

T.SWM.004 Subverting of general software loading procedures 22

4.2 SOFTWARE OPPORTUNISTIC THREATS (T.SWO.XXX) 22

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 3 of 50 OMTP PUBLISHED

T.SWO.001 Attack via faulty OS code(bug) .. 22

T.SWO.002 Attack, via unrelated application APIs, to secure resources. 23
T.SWO.003 Breaking Access Control performed by software to hardware
features ... 24
T.SWO.004 Breaking Access Control performed by software to
confidential data, code and keys ... 24
T.SWO.005 Buffer overflows ... 25
T.SWO.006 Code verifiability related security holes 26
T.SWO.007 Unpredictable CPU instructions ... 26
T.SWO.008 DMA or CLCD use for accessing memories 27

T.SWO.009 Faking of general software identity 27
T.SWO.010 CLCD use for displaying memories and interfering with
displayed data ... 28
T.SWO.011 Attack through uncontrolled API in general software space . 28
T.SWO.012 Attack through uncontrolled instruction set space 29

T.SWO.013 Attack through interaction of software concurrent processes
causing logical breaks ... 29

T.SWO.014 Exploit software bugs in execution environment 30
T.SWO.015 Software Attack on Type Unsafe APIs inside the execution
environment ... 30
T.SWO.016 Software Attack on Type-Safe APIs inside the Execution
Environment .. 30
T.SWO.017 Attack Through Virtual Debug Port 31

4.3 HARDWARE THREATS – EXTERNAL (T.HWE.XXX) 31

T.HWE.001 Unauthorised access via external invasive or non-invasive
debug ports (e.g. JTAG, ETM) .. 31

T.HWE.002 Unauthorised re-Flash of device through external debug port
(e.g. JTAG) .. 32

T.HWE.003 Unauthorised re-flash of device through external serial
interface .. 32

T.HWE.004 Bypass security by external battery removal 33
T.HWE.005 Bypass security by external memory card removal 33

T.HWE.006 Scan chain attack (direct or side channel) 33
T.HWE.007 Built-in self-test .. 34

4.4 HARDWARE THREATS – TERMINAL INTRUSIVE (T.HWT.XXX) ... 34

T.HWT.001 Extract secret via Bus monitoring (hardware probes) 34
T.HWT.002 Unauthorised access via internal but off-SOC invasive or non-
invasive Debug Ports (e.g. JTAG, ETM) ... 35
T.HWT.003 General hardware Attack on data in external RAM (e.g.
Probing) ... 36

T.HWT.004 Hardware Attacks on static information in internal RAM (on-
SOC, outside package) ... 36
T.HWT.005 Power analysis Attack to reveal secrets 36
T.HWT.006 Time analysis Attack to reveal secrets 37
T.HWT.007 Bypass security by glitch Attacks (e.g. power) 37

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 4 of 50 OMTP PUBLISHED

T.HWT.008 Bypass security by power removal to NV memory 38

T.HWT.009 Attack through interaction of hardware concurrent processes
causing logical breaks ... 39

4.5 HARDWARE THREATS – COMPONENT INVASIVE (T.HWC.XXX) 39

T.HWC.001 Extract secret via Bus monitoring (de-cap/drill & hardware
probes) .. 39
T.HWC.002 Hardware Attacks on static information in internal RAM (on-
SoC, inside IC package) .. 40
T.HWC.003 Hardware Attacks on dynamic information in internal RAM
(on-SoC, inside IC package) ... 40
T.HWC.004 De-capping of the chip holding secrets 41
T.HWC.005 Focused Ion Beam (FIB) manipulation 41

T.HWC.006 Probe Stations ... 42

4.6 HARDWARE CLONING, COMPONENT REPLACEMENT OR

COMPONENT ADDITION THREATS (T.CLO.XXX) 42

T.CLO.001 Cloning Device by copying PCB and Flash 42
T.CLO.002 External RAM Chip Replacement Attack 43
T.CLO.003 Hardware Attacks to change static information in external
RAM .. 43
T.CLO.004 Hardware Attacks to change dynamic information in external
RAM .. 44
T.CLO.005 Attack by replacement of Flash when power is off (pre-boot)
 .. 44

T.CLO.006 Attack by replacement of Flash when power is on (post-boot)
 .. 45

5 DEFINITION OF TERMS ... 46

6 ABBREVIATIONS ... 48

7 REFERENCED DOCUMENTS .. 50

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 5 of 50 OMTP PUBLISHED

The information contained in this document represents the current view held
by OMTP Limited on the issues discussed as of the date of publication.

This document is provided “as is” with no warranties whatsoever including any
warranty of merchantability, non-infringement, or fitness for any particular
purpose. All liability (including liability for infringement of any property rights)
relating to the use of information in this document is disclaimed. No license,
express or implied, to any intellectual property rights are granted herein.

This document is distributed for informational purposes only and is subject to
change without notice. Readers should not design products based solely on
this document.

Each Open Mobile Terminal Platform member and participant has agreed to
use reasonable endeavours to inform the Open Mobile Terminal Platform in a
timely manner of Essential IPR as it becomes aware that the Essential IPR is
related to the prepared or published specification. The declared Essential IPR
is publicly available to members and participants of the Open Mobile Terminal
Platform and may be found on the “OMTP IPR Declarations” list at the OMTP
Members Access Area.

The Open Mobile Terminal Platform has not conducted an independent IPR
review of this document and the information contained herein, and makes no
representations or warranties regarding third party IPR, including without
limitation patents, copyrights or trade secret rights. This document may
contain inventions for which you must obtain licenses from third parties before
making, using or selling the inventions.

Defined terms and applicable rules above are set forth in the Schedule to the
Open Mobile Terminal Platform Member and Participation Annex Form.

© 2009 Open Mobile Terminal Platform Limited. All rights reserved. No part of
this document may be reproduced or transmitted in any form or by any means
without prior written permission from OMTP Limited. “OMTP” is a registered
trademark. Other product or company names mentioned herein may be the
trademarks of their respective owners.

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 6 of 50 OMTP PUBLISHED

1 INTRODUCTION

1.1 DOCUMENT PURPOSE

When defining the Security Policy of a User Equipment (UE, as defined
in 3GPP TR 21.905 [1]), the relevance of each of the Threats
applicable to UE Assets should be taken into consideration. Indeed,
protecting specific Assets against specific Threats must be considered
as a balance of cost of security protection vs. cost of security break.

Cost of security protection encompasses:

 Increased development time

 Increased silicon cost

 Increased manufacturing and test time, including:

o Installing the security
o Verifying the security

 Increased device complexity

 Decreased device performance

Cost of security break includes:

 Potential cost of the device

 Service and support in countering the break

 The cost can be in reputation or pure financial terms and can
affect

o The manufacturer
o The software provider
o The information owner
o The information user
o The operator

This document defines a list of common Threats that may apply to a
UE. The potential danger of each Threat, as well as the ease of
creation, spreading, and blocking of each Threat is also described.

1.2 INTENDED AUDIENCE

This document is written for those who have an understanding of
security and require details of possible Threats applicable to UEs.

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 7 of 50 OMTP PUBLISHED

1.3 REQUIRED EXPERTISE

The level of required expertise reflects the expertise of a Threat Agent
and the availability of tools required to find a vulnerability that can be
exploited.

Easy Can be implemented by a UE user

Moderate Requires expert knowledge to perform

Hard Requires expert knowledge and expensive
laboratory resources to perform

1.4 EASE OF REPEAT

The ease of repeat reflects the expertise, cost and time to reproduce
the Attack on UEs other than the device where the vulnerability was
originally found.

Easy Can be repeated by UE user

Moderate Can be repeated by backstreet shop

Hard Requires expert knowledge and expensive
laboratory resources to repeat

1.5 EASE OF DISTRIBUTION

The ease of distribution reflects how easy it is to spread the result of
the Attack, or to distribute methodology in order to reproduce the
Attack.

WWW

Information can be spread on the World Wide
Web once the first break is accomplished,
typically distributed as software to repeat the
exploit or as the discovered secret.

This can be considered indicative of the worst
case.

Small
Corporate

Requires a small corporation to make use of
information / distribute the security crack, e.g.
to manufacture modification chips, called
hereafter "Mod Chips"

Corporate
Requires a large corporation to make use of
the information, e.g. to create and sell cloned
phones

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 8 of 50 OMTP PUBLISHED

Some Attacks directly create a result, such as running a piece of
software that allows a device to ignore DRM when played on that
device.

Some Attacks result in a piece of data that can then be used
elsewhere. For example, a piece of software that runs on a device and
sends the owner‟s credit card details (the result) back to a thief for
future use.

Any Attack that reveals a class secret (such as the credit card details
above) is immediately considered "WWW" distributable (synonymous
with the worst case).

1.6 THREATS CLASSIFICATION

While it is possible to divide Threats into a number of classifications
and to varying degrees of granularity, this document divides Threats
into six categories to enable intuitive understanding of the Threat (with
associated Required Expertise, Ease of Repeat and Ease of
Distribution) as well as to keep the number of categories to a minimum
in order to maintain simplicity within the document.

The six categories of Threats and their definitions are listed below

1. Software Modification Threats (T.SWM.xxx)
o Logical Threats aiming to modify the software of the UE.

2. Software Opportunistic Threats (T.SWO.xxx)
o Logical Threats aiming to take advantage of a weakness

in either the definition or implementation of the software in
the UE. The Threat could expose secrets or cause the
terminal to behave in an unintended or unauthorised way.

3. Hardware Threats – External (T.HWE.xxx)
o Physical Threats which can be implemented without any

breach of the terminal‟s Integrity, generally through the
ports and connectors available outside of the UE.

4. Hardware Threats – Terminal Intrusive (T.HWT.xxx)
o Physical Threats which are implemented by opening the

outer encasing of the UE. These include probing of
busses on the PCB or the exposed pins of a package
mounted on the PCB. This includes the physical removal
of a component for offline Attacks if the component‟s
Integrity is not physically damaged in the removal process
or the Attack.

5. Hardware Threats – Component Invasive (T.HWC.xxx)
o Physical Threats or Attacks which are implemented by

affecting the physical Integrity of the component (breach
or destruction), including but not limited to the SoC,
Memories, and PCB. This includes the physical removal
of a component for offline Attacks if the component‟s

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 9 of 50 OMTP PUBLISHED

Integrity is physically damaged in the removal process or
the Attack.

6. Hardware Cloning, Component Replacement or Component
Addition Threats (T.CLO.xxx)

o Physical Threats which consist of replacing a part or the
entire UE with an alternative component, or of adding a
component to the UE. This includes but is not limited to
replacing the SoC or Memory with another SoC or
Memory as well as creating a copy of the UE.

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 10 of 50 OMTP PUBLISHED

2 THREATS SUMMARY

What follows is a brief overview of the Threats which may be
considered. A more detailed explanation of each Threat can be found
in section 4.

2.1 SOFTWARE MODIFICATION THREATS (T.SWM.XXX)

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.SWM.001 Attack via faulty
privileged code extensions (e.g.
drivers)

Moderate Easy WWW

T.SWM.002 Attack via illegal
privileged code extensions
(drivers)

Moderate Easy WWW

T.SWM.003 Unauthorised re-
flash of device through FOTA

Hard Hard Small Corp

T.SWM.004 Subverting of
general software loading
procedures

Moderate Moderate WWW

2.2 SOFTWARE OPPORTUNISTIC THREATS (T.SWO.XXX)

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.SWO.001 Attack via faulty OS
code(bug)

Moderate Easy WWW

T.SWO.002 Attack, via unrelated
application APIs, to secure
resources

Moderate Easy WWW

T.SWO.003 Breaking Access
Control performed by software to
hardware features

Moderate Easy WWW

T.SWO.004 Breaking Access
Control performed by software to
confidential data, code and keys

Moderate Easy WWW

T.SWO.005 Buffer overflows Moderate Easy WWW

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 11 of 50 OMTP PUBLISHED

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.SWO.006 Code verifiability
related security holes

Moderate Easy WWW

T.SWO.007 Unpredictable CPU
instructions

Hard Easy WWW

T.SWO.008 DMA or CLCD use
for accessing memories

Moderate Easy WWW

T.SWO.009 Faking of general
software identity

Moderate Easy WWW

T.SWO.010 CLCD use for
displaying memories and
interfering with displayed data

Moderate Easy WWW

T.SWO.011 Attack through
uncontrolled API in general
software space

Moderate Easy WWW

T.SWO.012 Attack through
uncontrolled instruction set space

Hard Easy WWW

T.SWO.013 Attack through
interaction of software concurrent
processes causing logical breaks

Hard Moderate WWW

T.SWO.014 Exploit software
bugs in execution environment

Moderate Easy WWW

T.SWO.015 Software Attack on
Type Unsafe APIs inside the
execution environment

Moderate Easy WWW

T.SWO.016 Software Attack on
Type-Safe APIs inside the
execution environment

Hard Easy WWW

T.SWO.017 Attack Through
virtual debug port

Moderate Easy WWW

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 12 of 50 OMTP PUBLISHED

2.3 HARDWARE THREATS – EXTERNAL (T.HWE.XXX)

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.HWE.001 Unauthorised access
via external invasive or non-
invasive debug ports (e.g. JTAG,
ETM)

Moderate Moderate Small Corp

T.HWE.002 Unauthorised re-
flash of device through external
debug port (e.g. JTAG)

Moderate Moderate Small Corp

T.HWE.003 Unauthorised re-
flash of device through external
serial interface

Moderate Easy Small Corp

T.HWE.004 Bypass security by
external battery removal

Easy Easy WWW

T.HWE.005 Bypass security by
external memory card removal

Easy Easy WWW

T.HWE.006 Scan chain attack
(direct or side channel)

Moderate Moderate Small Corp

T.HWE.007 Built-in self-test Moderate Moderate Small Corp

2.4 HARDWARE THREATS – TERMINAL INTRUSIVE (T.HWT.XXX)

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.HWT.001 Extract secret via
Bus monitoring (hardware
probes)

Moderate Moderate Small Corp

T.HWT.002 Unauthorised access
via internal but off-SoC invasive
or non-invasive debug ports (e.g.
JTAG, ETM)

Moderate Moderate Small Corp

T.HWT.003 General hardware
Attack on data in external RAM
(e.g. probing)

Hard Moderate Small Corp

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 13 of 50 OMTP PUBLISHED

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.HWT.004 Hardware Attacks on
dynamic information in internal
RAM (on-SoC, outside IC
package)

Hard Hard Small Corp

T.HWT.005 Power analysis
Attack to reveal secrets

Hard Hard WWW

T.HWT.006 Time analysis Attack
to reveal secrets

Hard Hard WWW

T.HWT.007 Bypass security by
glitch Attacks (e.g. power)

Hard Hard WWW

T.HWT.008 Bypass security by
power removal to NV memory

Moderate Moderate WWW

T.HWT.009 Attack through
interaction of hardware
concurrent processes causing
logical breaks

Hard Moderate WWW

2.5 HARDWARE THREATS – COMPONENT INVASIVE (T.HWC.XXX)

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.HWC.001 Extract secret via
Bus monitoring (de-cap/drill &
hardware probes)

Hard Hard Small Corp

T.HWC.002 Hardware Attacks on
static information in internal RAM
(on-SoC, inside IC package)

Hard Hard Small Corp

T.HWC.003 Hardware Attacks on
dynamic information in internal
RAM (on-SoC, inside IC
package)

Hard Hard Small Corp

T.HWC.004 De-capping of the
chip holding secrets

Hard Hard Small Corp

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 14 of 50 OMTP PUBLISHED

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.HWC.005 Focused Ion Beam
(FIB) manipulation

Hard Hard Small Corp

T.HWC.006 Probe stations Hard Hard Small Corp

2.6 HARDWARE CLONING, COMPONENT REPLACEMENT OR

COMPONENT ADDITION THREATS (T.CLO.XXX)

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.CLO.001 Cloning device by
copying PCB and Flash

Hard Hard Corporate

T.CLO.002 External RAM Chip
Replacement Attack

Hard Moderate Small Corp

T.CLO.003 Hardware Attacks to
change static information in
external RAM

Hard Moderate Small Corp

T.CLO.004 Hardware Attacks to
change dynamic information in
external RAM

Hard Moderate Small Corp

T.CLO.005 Attack by
replacement of Flash when
power is off (pre-boot)

Hard Moderate Small Corp

T.CLO.006 Attack by
replacement of Flash when
power is on (post-boot)

Hard Moderate Small Corp

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 15 of 50 OMTP PUBLISHED

3 TOOLS IN THE ARMOURY TO STOP THE HACKER

The information that follows covers a number of areas that should be
considered in any security conscious system design.

3.1 PRIVILEGED CODE AND ITS ROLE IN GUARDING SECRETS

Many Threat descriptions contain a reference to unauthorised code privilege
escalation into kernel mode.

Operating systems typically use a memory management unit (MMU) in the
CPU to enforce code and data isolation and hence provide security to a set of
features in the operating system. This isolation is controlled by code running
in privileged mode.

Unfortunately, as well as the MMU control code, other code also runs in
privileged mode and there are typically many ways of entering privileged
mode. Once any rogue code is able to execute in the privileged state it is
much easier for it to extract secrets or modify any security functionality in a
system. Therefore, breaking into privileged mode is a key initial goal of many
security cracks.

3.2 APIS AND SECURITY

Code uses APIs to communicate between one task and another. Many
Attacks are focused on misuse of APIs, either to cause the APIs to provide
information they are not meant to expose, or to cause the code on the other
side of the API to perform illegal actions.

In general, APIs are another key area of Attack, and are one of the routes to
break into privileged mode.

One reason that APIs are often vulnerable is that they are designed with goals
other than security in mind. Typically speed and functionality are the primary
drivers for general API development.

A typical OS may have hundreds or thousands of APIs across the
user/privileged boundary, many of which cannot be 'secured' as this will break
legacy code.

3.3 TYPE-SAFETY

Type describes the sort of data a block of memory holds.

This description may specify the following:

 That a particular data element is a string or an integer or a
floating point etc.

 How many bytes of memory it resides in

 The value range it may occupy (1 to 5, Monday to Friday etc)

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 16 of 50 OMTP PUBLISHED

Fundamentally, data in a Type-Safe API is strongly checked to make sure it is
what it claims to be, and often contains information related to more than one
of the above 3 points attached directly to each block of data.

Typical APIs are not written to be Type Safe, as there is an overhead to be
paid in terms of performance and flexibility to perform this checking.

If an API set between user and privileged space is Type-Safe then that gives
strong assurance that that interface will not leak data through API misuse (it
may still leak through logic flaws in the code behind the API). However, if
there is both a Type-Safe API between user and privileged mode, and a non-
Type-Safe API covering a different set of functionality, then the Type-Safe API
is vulnerable to flaws in the non-Type-Safe API (e.g. a buffer Overflow Attack
breaking the privileged /user boundary).

3.4 SECURITY DOMAINS

Security domains are areas of code or memory, either logically or physically
separate from the general software domain of a general OS. These area(s)
contain code and data of specific security interest.

Unfortunately, the term domain is used for a number of purposes – even
within the security industry. To prevent confusion, this document refers to the
secure world and normal (or non-secure) world, rather than secure or non-
secure domains.

3.5 SECURITY CRITICAL ASSETS VS NON-CRITICAL ASSETS

Throughout this document, a general OS is discussed as a source of many
potential Threats. This is because in a typical embedded environment there
are two goals from the platform point of view:

1. Provide a rich user experience with versatile connectivity to different
external information sources

2. Keep secrets on the platform safe from extraction

Separation of these two goals has advantages, at least in clarity of objectives.
Take as an example a device with secure connection over TCP/IP:

 On the device there may be a TCP/IP stack to provide Internet
connectivity

 It may also require HTTPS to establish a secure connection

 HTTPS sits on top of TCP/IP

 TCP/IP internals do not have to be secure, as those same
internals will be duplicated on numerous routing servers
between the device and, for example, a bank

 Security software only has to worry about placing the HTTPS
protocol on top of TCP/IP, and would actually be harmed by the
inclusion of the TCP/IP stack in its 'domain' due to the dangers

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 17 of 50 OMTP PUBLISHED

of code bloat and the need for verification of this code before
release

This leads to considering a device as containing a general OS with the entire
rich user interface, peripheral connectivity and protocol provision services,
and a separate domain containing the security critical code and data
segments.

Why consider this separation?

 The number of potential flaws in security can be directly linked to
code size

 One boundary used for two tasks, security and "other
operations", is flawed from the security point of view by
exploitable flaws in those "other operations"

 Change of code behind a security boundary should be kept to a
minimum. It should be separable from a general system re-build

If security tasks can be separated from general tasks then the critical code
size and other vulnerabilities can be reduced, and as a bonus extra
precautions can be taken that couldn‟t be applied to the general code (e.g.
relocate code to a physically safer space)

3.6 INTEGRITY CHECKING

One solution to the problem of "hacks" modifying a system is to perform
Integrity checking on the current system code and data.

This requires three things:

 knowledge of the correct state of that system code and data;

 a trustable entity that verifies that the system code and data is in
a correct state”;

 an effective and non-circumventable response to an integrity
failure.

One way to perform integrity checking is to calculate a signature value over a
block of data and compare that value to a reference value. Data and code can
be checked by software, running in a more trusted space, or by hardware. The
time to perform those checks can be considerable.

For instance:

A typical hashing algorithm takes around 22 Cycles per byte.

On a 200MHz CPU that gives

0.22 Seconds to check an entire 2Mb RTOS

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 18 of 50 OMTP PUBLISHED

2.2 Seconds to check an entire 20Mb smartphone OS

This speed restriction may raise problems in a system design.

Integrity checking works best where information is in a relatively static
environment.

If some other task is moving the information around then the Integrity checker
has to be informed (and trust that other task to be doing legal movements).

If the data is dynamic then the Integrity checker has to modify its reference
values each time that data is changed (and trust the changer was performing
a legal action).

Suggested Solutions:

 Consider how often such a check must occur:

o For Integrity failures that lead to instantaneous loss of a
valuable resource, any instance of a security break is
critical

o For Integrity failures that have long term consequences
on a device, (e.g. IMEI modification on phones) then it
may be acceptable to test the Integrity over a period of
days or weeks.

o If the memory cannot be attacked after it is loaded, then
that validation check only has to be done on load.
 This is why Secure Boot is so critical.

 Consider if everything needs to be checked:

o If software is placed behind a security boundary that is
safe from all considered Threats, then it does not need to
be checked once it has been put in place

o Security software may require a TCP/IP stack to transmit
its secrets to remote devices – but that security software
will be running safeguards on top of the TCP/IP to
prevent interception of data (e.g. HTTPS), so the TCP/IP
stack itself may not have to be checked for breaks

o Similar arguments can be considered for much of the
graphical and I/O environment of a device

o In a typical general OS, the kernel and Access Control
software are only a few hundred kilobytes. If that is
verified then that may be sufficient re-assurance

 Consider who does the checking

o If Integrity is validated in one part of a device, then that
part can act as the gatekeeper to other functionality

o Such Integrity can be built in a tree of trust, with one part
offering validation to another, as long as the susceptibility

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 19 of 50 OMTP PUBLISHED

to Attack of that one part is considered lower than that
which it is validating

3.7 SECURE BOOT

Trust in a system is built up from a well known defined point, known as the
“root of trust”. Typically, this might be an on-chip key, which can be used to
verify code and data brought in from elsewhere in the system. Where that root
of trust is used to validate the operating environment for the Execution
Environment, the process is known as Secure Boot, and establishes that:

 The system booted a valid OS or Virtual Machine Monitor (VMM)

 The system loaded valid drivers and kernel modules

 The system loaded valid applications

By “valid” it means that the code and static data being loaded is that which is
expected by the secure boot authority.

If the Secure Boot process completes correctly, there is an assurance that the
booted execution environment is one that the Secure Boot authority (e.g.
device manufacturer or network operator) approved.

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 20 of 50 OMTP PUBLISHED

4 THREATS DETAILS

The following list of Threats is not comprehensive but should act as a starting
point when considering a system design.

Each Threat comes with a description of the Threat and a list of suggested
solutions that may or may not be appropriate on a particular device.

4.1 SOFTWARE MODIFICATION THREATS (T.SWM.XXX)

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.SWM.001 Attack via faulty
privileged code extensions
(e.g. drivers)

Moderate Easy WWW

Description:

This form of Attack occurs when a typical OS is forced to allow changes to
privileged code due to the need to enable changing of driver software. Driver
software in such an OS typically has privileged access to handle interrupts
from peripherals.

One problem in this area is that drivers are typically written by third parties
and drivers are upgraded at different times to the main OS. This causes
problems when implementing any "whole device" validation scheme, or even
isolated checking of specific software updates

This code has a relatively high turnover for privileged code, is not written with
a security focus, and therefore is vulnerable to a higher incidence of security
flaws.

Suggested Solutions:

 Prevent downloading of privileged code

 Introduce a scheme of privileged code signing and certification

 Reduce size of privileged code using VMM or user-mode drivers
techniques

 Introduce another level of security safe from privileged access

T.SWM.002 Attack via illegal
privileged code extensions
(drivers)

Moderate Easy WWW

Description:

This form of Attack occurs because a typical OS is forced to allow changes to
Privileged code through changes to driver software. Driver software in such
an OS has privileged access if it is not running on top of a VMM.

Threat Agents intentionally write software to appear as a drivers to the OS,

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 21 of 50 OMTP PUBLISHED

thus enabling the exploitation of this access loophole.

Suggested Solutions:

 Prevent unauthorised downloading of privileged code
o Only permit download from trusted sources
o Only permit download when activated by an authorised route

 Prevent downloading of privileged code

 Introduce a scheme of privileged code signing and certification

 Reduce size of privileged code using VMM, user-mode drivers
techniques

 Introduce another level of security safe from privileged access

T.SWM.003 Unauthorised re-
flash of device through FOTA

Hard Hard Small Corp

Description:

FOTA (Firmware Over The Air) has to be considered separately from the
general execution environment of a device, as it often works as part of the
boot sequence, replacing one version of the general OS(s) with another.

The Threat is in the use of this valid update technique with invalid data.

This is the sort of Attack that may occur as soon the current range of more
direct re-flashing Attacks is stopped. It requires the update server's message
to be faked at some point in its life cycle, or to place a FOTA update package
on the device through other methods.

This is a particularly nasty Attack if a device is vulnerable to it, in that it can
completely change a device, perhaps without the user being aware that this is
happening, and it can almost certainly be done remotely.

Suggested solutions:

 Make sure that only validated and signed data is used to re-flash the
device

 Consideration must then be given as to where to store the validating
and signature check code and data, and what the fallback position is if
the current set of keys is leaked

 Make sure that only validated and signed code can be executed on the
device as a result of re-flashing

Note: Current FOTA solutions claim this capability, and it may be considered
that as they execute during a device re-boot, that their keys and software are
validated and no opportunity to Attack them exists. It may be that only
hardware Attacks can break current FOTA solutions, in which case why
would a user allow their device to be so vulnerable, however many current
Threats appear as Trojans and it may be in the future that such Trojan

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 22 of 50 OMTP PUBLISHED

hardware modifications exist e.g. “This Mod Chip gives you free DRM (by
breaking FOTA security)”.

T.SWM.004 Subverting of
general software loading
procedures

Moderate Moderate WWW

Description:

One place that the general OS may perform Integrity and Access Control
checks is in the OS file loader. In this context, the file loader is the piece of
code that allocates memory and then loads code from long term storage
(Flash, hard drive etc) for execution as an executable, dynamically linked
library or even driver. It may also inform the rest of the system as to the rights
of that piece of code when it comes to dealing with APIs.

Therefore the file loader is a particularly critical piece of security code and if
replaced with non-checking, full-access granting code, this would bypass
much of any OS security.

By its very nature the file loader can often be considered a static piece of
code (as nothing exists to move it around), hence its placement in memory
can be carried out through secure boot.

Typically this means that it can only be Attacked by breaks in the
user/privileged code split or through hardware techniques, allowing the file
loader or information it is dependent upon to be replaced, or modified.

Suggested Solutions:

 Move this piece of code behind another layer of security boundary

 Perform checks to ensure that no code and static changes have been
made to this piece of code

 If the file loader is outside the general security infrastructure (for
performance reasons), perform remote load requests from the secure
code base to see if the file loader security is running as expected

4.2 SOFTWARE OPPORTUNISTIC THREATS (T.SWO.XXX)

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.SWO.001 Attack via faulty OS
code(bug)

Moderate Easy WWW

Description:

Recent studies have shown up to 33 security specific flaws per million lines of
average code. (A long term study of the OpenBSD code base [2]).

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 23 of 50 OMTP PUBLISHED

Typical C code produces 17 bytes per line [3].

So for a typical 20Mb Feature phone there may be 40 security flaws.

This is not including bugs that just crash the system; these 40 are specifically
security related flaws that leak secrets, break Access Control or the like.

Suggested Solutions:

 Reduce code size

 Intensify testing and reviewing on security critical code

 Isolate security critical code from general code base

T.SWO.002 Attack, via unrelated
application APIs, to secure
resources.

Moderate Easy WWW

Description:

Each and every API in an OS can potentially expose security vulnerabilities,
even if it has nothing to do with security. This is because the OS APIs are the
OS‟s separation mechanism between different domains of privileged data.
That privileged data may be related to secrets, it may be related to methods
of drawing on the screen, or it may be related to allocating memory and
manipulating the MMU. Unfortunately these APIs are critical to exposing the
rich and versatile functionality that general OS‟s need to provide. Adding
security to all APIs slows down the OS and requires the re-writing of large
areas of affected code.

Example of API vulnerabilities:

 OpenFile(“C:\test.txt”) is a legal API being used legally

 OpenFile(“DBG:”) is using that legitimate API, but making use of
potential errors deeper down in the OS structure

 OpenFile(“http://127.0.0.1/config.asp -SimUnlock”) is using that
legitimate API, but making use of potential errors deeper down in the
OS structure

 OpenFile(“%c%c”) might cause an OS to report an error in the
filename, but the error reporting code may break when displaying
%c%c and display critical stack data. (%c is an internal command to
the 'C' print instruction to display information that is on the stack)

Suggested Solutions:

 Use Type-Safe APIs so malformed data cannot be sent through them

 Isolate security critical code from the general code base, so that the
boundary that must be crossed to enter that code is not the same one
as that being crossed by general code API usage (e.g. the security

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 24 of 50 OMTP PUBLISHED

code is not in the same domain or sub-domain group as the graphics
driver code)

T.SWO.003 Breaking Access
Control performed by software
to hardware features

Moderate Easy WWW

Description:

This is a sub-category of T.SWM.001 or T.SWO002 in which there is a flaw in
an API. In this case the Attack is on an API that allows the Threat Agent to
access hardware.

This often leads to further vulnerabilities as hardware has different access
rights to software.

This vulnerability is increased in an environment where the APIs are forced to
follow a schema created for a more general interface need. For example,
general operating systems do not use Type-Safe structures to pass data
across APIs because of the speed overhead, whereas a security specific API
should ideally be using such structures

Suggested Solutions:

 Place critical hardware Access Control software in environment
separated from general code base

 Consider if hardware (such as DMAs or CLCD controllers) can be used
to circumvent other security (see T.SWO.008)

 Lock down some hardware capabilities so that they cannot be changed
at the wrong 'time', e.g. system resources should only be allocated
during boot

o A good quality secure boot and system design should enable
this

 Provide hardware and/or additional software features that restrict
circumvented Access Control from exposing secrets

 Reduce size of security code to reduce incidence of bugs

 Perform detailed code analysis

T.SWO.004 Breaking Access
Control performed by software
to confidential data, code and
keys

Moderate Easy WWW

Description:

This is a sub-category of T.SWM.001 or T.SWO002 in which a flaw in a
security API allows the Threat Agent to access software or data. This

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 25 of 50 OMTP PUBLISHED

vulnerability is increased in an environment where the APIs are forced to
follow schema created for a more general interface need.

For example, general OS‟s do not use Type-Safe structures to pass data
across APIs because of the speed overhead, whereas a security specific API
should ideally be using such structures.

Suggested solutions:

 Deploy Type-Safe APIs across vulnerable boundaries to ease good
practice

 Do not mix Type-Safe and non-Type-Safe APIs across the same API
domain boundary

 Reduce the size of security code to reduce incidence of bugs

 Perform detailed code analysis

T.SWO.005 Buffer overflows Moderate Easy WWW

Description:

This can be classified as the classic example of the vulnerability exposed
through use of non-Type-Safe APIs (See T.SWO.004).

By passing data through an API where it is known that the API is designed to
receive X bytes and we are passing X+N bytes, it can be arranged that the N
bytes overflow into an area that was used by other storage (if it is a heap
overflow) or will cause the return address to be corrupted (if it is a stack
overflow).

Stack overflow allows the "Return" instructions (at the end of each block of
code) to jump to random locations and therefore illegally run random code, or
local data to be changed – for example modifying the local rights of a piece of
code.

Heap overflow can allow injection of different data into other areas of the OS,
and hence allow security control information to be modified.

Suggested solutions:

 Use a Type-Safe API; where all data has specified size information
Buffer Overflow is prevented by buffer size tracking. Such tracking has
a notable speed overhead.

 As above but only apply this to the boundary into security critical
software

o Note: it is of no value having a Type-Safe API across a domain
boundary, if elsewhere there is a non-Type-Safe API across the
same boundary, it will then be the non-Type-Safe boundary that

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 26 of 50 OMTP PUBLISHED

is being attacked, not the particular API functionality.

T.SWO.006 Code verifiability
related security holes

Moderate Easy WWW

Description:

Bugs and security flaws exist in code, but it is possible to mitigate their
occurrence. It is known that these bugs and flaws appear at certain rates
based on design and testing of the code. Verification of code quality can be
improved by the application of greater resources and techniques but is
expensive.

Suggested solutions:

 Reduce the size of the code base

 Isolate the security critical code into a small code base for
concentrated analysis

 Invite independent analysis

 Deploy development regimes (coding standards and documentation
methodologies) that lead to best practice

 Provide execution environments that guard against flawed code by
restricting the developer (reduced instruction set, controlled data
import and export options)

T.SWO.007 Unpredictable CPU
instructions

Hard Easy WWW

Description:

On a 32 bit RISC processor there are a potential 232 instructions (in real
systems it is actually more than this but a sensible figure is 4 billion
instructions). Not all of these are defined.

When an undefined instruction is executed the processor should perform an
exception, but can potentially end up in an undefined state and therefore
cause a security leak.

It is also possible for the processor, through error or external interference, to
find itself in a state that should not be reachable. For example: receiving
security data into a register that has changed to a non-secure mode between
the time the data request was made, and the time the actual data reaches the
register.

Suggested Solutions:

 Do not use native code, where a Threat Agent may introduce such

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 27 of 50 OMTP PUBLISHED

undefined instructions

 Use a processor where all native instruction options (including
undefined) are verified in the RTL as being incapable of illegally
breaking the secure execution boundary

T.SWO.008 DMA or CLCD use
for accessing memories

Moderate Easy WWW

Description:

DMA (Direct Memory Access) is a method used to move data in the device
independently of the CPU. As such it is not blocked by MMU level defences
and the user/privileged split.

Such properties are typical also for other hardware modules that have “bus
master” rights, so a similar Attack might be achieved via other “bus masters”
such as another CPU, a CLCD controller, an ethernet controller, or even a
camera block.

Suggested Solutions:

 Place access to the DMA system behind trustable software

 Restrict the memory the DMA system can access with hardware
extensions (address space limiters, microprogrammable DMA, MMU
platform extensions, etc.) so that DMA cannot be used to move
unauthorised data and hence steal secrets

T.SWO.009 Faking of general
software identity

Moderate Easy WWW

Description:

Typically general OS‟s have some way of uniquely identifying an application.
When software makes use of a security API, the protection offered may be
broken by fooling that API as to the identity of the calling application. An
example of this is an API that only will release keys to application ID 325, so
application ID 666 breaks other (weaker) security in the environment to claim
to be 325.

Suggested solutions:

 If the identity of an application is broken, then the general OS can be
considered broken. The protection then is to only have exposed APIs
that perform non-critical operations (i.e. don‟t have an operation for
retrieving a key once placed behind a security boundary). This means
that services that make use of the key also have to be placed behind
the same security boundary.

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 28 of 50 OMTP PUBLISHED

o To enable this form of defence and yet perform required tasks, it
must be possible for an application to move actual code behind
the security boundary, without endangering that boundary for
other users.

T.SWO.010 CLCD use for
displaying memories and
interfering with displayed data

Moderate Easy WWW

Description:

This is a Threat similar to T.SWO.008. It is however separate because the
information generated is immediately available outside the device, and so
does not require so much in the way of supporting software.

The CLCD (Colour LCD) controller is the graphics chip in a mobile device.
CLCD controllers are designed to be pointed at memory blocks which
normally contain graphics data. This usually bypasses the CPU‟s MMU and
any privileged / user protections it may offer.

For games, graphics chips typically have to be pointed at different memory
banks by the game code. If no hardware protection exists then a 'game' can
be used to display secrets on the screen. Interpreting the screen may be
difficult as it is just 'raw' memory, but it is possible. It can be considered
relatively easy Attack to perform, as graphics processors tend to allow this
sort of capability through programmer-friendly APIs. However the translation
of the data may be considered more difficult as a moderate knowledge of
graphic display formatting is required.

Suggested Solutions:

 Use hardware means to block access from CLCD device to critical
secrets

 Place Access Control software between the CLCD and applications to
restrict target memory

T.SWO.011 Attack through
uncontrolled API in general
software space

Moderate Easy WWW

Description:

By uncontrolled, we are referring to APIs that are not designed from a
security point of view. While they may be Type-Safe or Type-Unsafe, they
should just be considered 'untrusted' if they have the potential to breach the
security domain.

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 29 of 50 OMTP PUBLISHED

Suggested Solutions:

 Separate security and general API domains

T.SWO.012 Attack through
uncontrolled instruction set
space

Hard Easy WWW

Description:

If a program can issue commands to do anything, e.g. access any memory,
then it is difficult to protect secrets from such a program. In a typical system,
the user/privileged code split restricts the actual instructions available to user
space native code, as well as the memory it can access. For example; user
space native code cannot issue commands to switch off the user/privileged
space separation.

This threat is realised by user space code breaking into the privileged space
by some means, such as a Buffer Overflow attack.

Suggested Solutions:

 In any security code environment it is desirable to heavily control the
functionality a programmer has to a limited set of instructions that are
considered security safe

T.SWO.013 Attack through
interaction of software
concurrent processes causing
logical breaks

Hard Moderate WWW

Description:

Malicious software could exploit scheduling concurrence to let a task access
another task resources (e.g. where an operating system dynamically
schedules processes that use common resources, by exploiting a race
condition). This security problem is described in T.SWO.013.Suggested
Solutions:

 Avoid any concurrence (i.e. with a single thread model)

 Stay with a simple thread interaction model in any area that is dealing
with security, and isolate that area cleanly from other more complex
processing models

 If using multi-threaded model, use an approach that allows the
demonstration of robustness against the above threat.

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 30 of 50 OMTP PUBLISHED

T.SWO.014 Exploit software
bugs in execution environment

Moderate Easy WWW

Description:

Any software environment has the potential for bugs.

Suggested Solutions:

 Reduce the amount of code that can potentially access the
environment containing the security critical code

 Perform more validation and quality control effort on the security code
compared to normal code environments

 Get external validation of the code

 Use developers who are aware of security and quality development
issues. Special consideration should be given to selecting and training
such developers, as in many instances prior experience may have
conditioned them to produce rich, rather than secure, code

T.SWO.015 Software Attack on
Type Unsafe APIs inside the
execution environment

Moderate Easy WWW

Description:

The Threat is that even if the boundary between secure and non-secure
environments is protected by Type-Safe APIs, that if there are Type-Unsafe
APIs in the secure environment then these may cause security holes.
Typically we are looking at limiting damage from bugs rather than hackers
operating inside the security environment, though that should not be
discounted completely.

Suggested solution:

Make use of Type-Safe APIs when possible inside a security environment.
The in-built structural checking of the command data tends to reduce any
effects of erroneous events

T.SWO.016 Software Attack on
Type-Safe APIs inside the
Execution Environment

Hard Easy WWW

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 31 of 50 OMTP PUBLISHED

Description:

The Threat is that even with Type-Safe APIs we may still see internal actions
that are undesirable. In that case security should be guarded by consideration
of what those Type-Safe APIs expose. For example, does the secure
cryptography API have to work with keys, or can it work with handles to those
keys, and leave the keys in secure storage.

Suggested Solutions:

 Design internal APIs to consider information hiding / access
restriction wherever possible

T.SWO.017 Attack Through
Virtual Debug Port

Moderate Easy WWW

Description:

A debug port need not be implemented as a hardware interface, but could be
exposed as a software mechanism. A malicious application could then use
that port for any attacks that could be attempted on a physical port, but with
the ability for the attack to be distributed easily and executed remotely.

Suggested Solutions:

 Provide authentication mechanisms for access to the port

 Add a hardware lock to prevent usage in the field

 Ensure that the debug port cannot access security critical assets

4.3 HARDWARE THREATS – EXTERNAL (T.HWE.XXX)

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.HWE.001 Unauthorised
access via external invasive or
non-invasive debug ports (e.g.
JTAG, ETM)

Moderate Moderate Small Corp

Description:

Security critical code and data may be held in memory. If that memory is
accessible to the processor, then invasive or non-invasive debug ports can be
used to extract that information. Invasive debug consists of a debug session
that modifies or interrupts the program flow, such as the insertion of a
breakpoint. Non-invasive debug does not alter program flow and is used to

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 32 of 50 OMTP PUBLISHED

observe the operation of the processor, such as an embedded trace port.

Suggested Solutions:

 Provide hardware access restrictions to disable above debug ports
when particular code is active and to block access to certain code
space.

o Such restriction could be enabled or disabled by hardware or
software on the device, providing levels of invasive or non-
invasive access depending on the rights of the party activating
the debug.

 Do not provide invasive or non-invasive access to the device
o This may not always be acceptable as it prevents pre and post

deployment access required for realistic maintenance of
devices.

 Ensure that the debug port cannot access security critical assets.

T.HWE.002 Unauthorised re-
Flash of device through
external debug port (e.g.
JTAG)

Moderate Moderate Small Corp

Description:

This is one of the most common Attacks today. It is used to change IMEI and
SIMlock (code and data), and also device type properties (making a cheap
device activate the features of a more expensive phone). It occurs because
manufacturers leave JTAG accessible on production devices to enable field
upgrade and debug. The removal of connectors is typically bypassed by high
street 'SIM Unlock' shops by placing in special jigs.

Suggested Solutions:

 Use security code or hardware to enable or disable JTAG for access to
device

o Typically based on flash rights certificates

 Ensure that re-flashed code and data cannot be used e.g. by checking
authenticity and integrity during secure boot

T.HWE.003 Unauthorised re-
flash of device through
external serial interface

Moderate Easy Small Corp

Description:

This is the same as T.HWE.002, on devices which only have a serial port for
debug and upgrade.

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 33 of 50 OMTP PUBLISHED

Suggested Solutions:

 Use security code or hardware to enable or disable serial port for
access to the general code space

 Use security code or hardware to enable or disable serial port for
access to the security code space

o (Typically these two would receive debug rights certificates, and
then turn on a specific set of capabilities based on these)

 Ensure that re-flashed code and data cannot be used e.g. by checking
Authenticity and Integrity during secure boot

T.HWE.004 Bypass security by
external battery removal

Easy Easy WWW

Description:

Should the external battery be the only source of power to a device, removing
the supply during a sensitive operation may leave the UE in an unknown
state. For example in a DRM situation, a song may have been played, but if
the rights count is not decremented until the end of the song, then removing
the power source could result in the user playing the song indefinitely.

In addition, by removing the power source for a sufficient amount of time, any
internal clock may halt, and some long term memory may be corrupted.

Suggested Solutions:

 Ensure sensitive operations are performed in a sensible order

 Maintain some short term, on-device power source

 Check on board clocks for “sanity” at boot

T.HWE.005 Bypass security by
external memory card removal

Easy Easy WWW

Description:

Similar to T.HWE.004, if an external memory card is used to hold rights to
media, removing the card prior to rights manipulation may allow infinite plays.

Suggested Solutions:

 Ensure sensitive operations are performed in a sensible order

 Deploy a journaling file system

T.HWE.006 Scan chain attack
(direct or side channel)

Moderate Moderate Small Corp

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 34 of 50 OMTP PUBLISHED

Description:

A scan chain is used to allow the contents of hardware registers in a SoC to
be read and altered. If a secret is in current use by the device, the ability to
read the scan chain exposes that secret. In addition, it may be possible to
switch the core to a privileged state and then load secrets. However, such an
attack is likely to require knowledge of the scan topology.

Suggested Solutions:

 Don‟t expose scan-chain directly

 Only enable scan-chain to authorized debugger

 Provide hardware access restrictions to disable scan chain when
particular code is active

o Such restriction could be enabled or disabled by hardware or
software on the device, providing levels of invasive or non-
invasive access depending on the rights of the party activating
the debug

 Ensure that the scan chain does not encompass security critical assets

T.HWE.007 Built-in self-test Moderate Moderate Small Corp

Description:

Built-in self test (BIST) allows a SoC to test its internal logic, by applying
inputs from a known generator (usually a pseudorandom number generator
such as a linear feedback shift register) and feeding the outputs through a
multiple input signature register. The Threat arises from the ability to apply
inputs to the system logic, which could be exploited to escalate privilege.

Suggested Solutions:

 Only enable scan-chain to authorized debugger

 Don‟t expose the BIST interface directly
o Provide hardware access restrictions to disable scan-chain

when particular code is active

4.4 HARDWARE THREATS – TERMINAL INTRUSIVE (T.HWT.XXX)

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.HWT.001 Extract secret via
Bus monitoring (hardware
probes)

Moderate Moderate Small Corp

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 35 of 50 OMTP PUBLISHED

Description:

Any data that travels off-SoC to DRAM or flash is vulnerable to being stolen
by applying a monitoring probe to the physical bus that it travels down. This
could even be done to on-SoC busses (see T.HWC.001) but on-SoC
monitoring is much harder as the probe must operate in the <60nm size area.

 Off-SoC monitoring may be performed without leaving a trace. Some
security criteria do not expect the blocking of such Attacks, but do
require that there should be some physical evidence left by such
tampering

 On-SoC would probably destroy the device for normal use while
preparing for the probing

Suggested Solutions:

 Route tracking sub-surface in the PCB to make access more difficult

 Keep the critical secret data and code on-SoC

 Apply protective layers to resist, or be indicative of, attempts to attach
such probes

 Stack devices at package or die level to prevent attachment of probes

 Encrypt the data in transit over the bus

T.HWT.002 Unauthorised
access via internal but off-SOC
invasive or non-invasive
Debug Ports (e.g. JTAG, ETM)

Moderate Moderate Small Corp

Description:

Security critical code and data may be held in memory. If that memory is
accessible to the processor, then invasive and non-invasive debug ports can
be used to extract that information.

Suggested Solutions:

 Provide hardware access restrictions to disable above debug ports
when particular code is active and to block access to certain code
space

o Such restriction could be enabled or disabled by hardware or
software on the device, providing levels of invasive and non-
invasive debug access depending on the rights of the party
activating the debug

 Do not provide invasive or non-invasive debug access to the device
o This may not always be acceptable as it prevents pre and post

deployment access required for realistic maintenance of devices

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 36 of 50 OMTP PUBLISHED

T.HWT.003 General hardware
Attack on data in external RAM
(e.g. Probing)

Hard Moderate Small Corp

Description:

Hardware probing of data held in external RAM. External RAM may often be
probed via logic analyser, or be subject to data modification by a bus
interception attack. This may expose any keys, data and code stored within,
and data modification may be used to escalate privilege.

Suggested solutions:

 Do not store sensitive information off-SoC

T.HWT.004 Hardware Attacks on
static information in internal
RAM (on-SOC, outside
package)

Hard Hard Small Corp

Description:

Hardware probing data held in internal RAM through exposed bus
connections on the outside of the package which contains that RAM.

Typically information is discovered by having the device running and then
exercising that information so it transits a bus that is being probed. This threat
is typically used to extract class secrets, which may be stored on-chip.

See page 11 of "Advances in Smartcard Security", by Marc Witteman [4].

Suggested solutions:

 Do not allow external access to internal buses

T.HWT.005 Power analysis
Attack to reveal secrets

Hard Hard WWW

Description:

By monitoring the variations in power consumption of a processor core it is
possible to perform statistical analysis and deduce the actions of that core
based on the power cost for various operations. Such Attacks have been
performed in the past on smart cards and similar systems. While this works
well on cores that do only one thing at a time, SoCs introduce noise to this
operation from their many processor cores and delayed/phased bus activity.
While this does not stop such an Attack, in theory it may make it much harder

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 37 of 50 OMTP PUBLISHED

to actually perform.

Smartcards also get round this Attack by using onboard power regulation and
power balancing systems.

These will tend to mean that a SoC will always run at the worst case power
consumption, something not desirable in the general OS space. This will have
a large battery impact on any device.

Suggested Solutions:

 Use smartcard technology to create your SoC

 Perform operations that must be protected against such Attacks in a
separate or integrated smartcard type core

T.HWT.006 Time analysis Attack
to reveal secrets

Hard Hard WWW

Description:

By monitoring the variations in power consumption of a processor core, and
relating it to time, it is possible to perform statistical analysis and deduce the
actions of that core based on the power cost for various operations. Such
Attacks have been performed in the past on smart cards and similar systems.
While this works well on cores that do only one thing at a time, SoCs‟ busses
(with multiple delayed transactions) introduce noise to this operation due to
having many processors and delayed/phased bus activity. While this does not
stop such an Attack (in theory) it may make it much harder to actually
perform.

Smartcards prevent this Attack by making all instructions take the same
amount of time, and so no difference is available to be analysed. Obviously
this means that all instructions must then take the length of time it would have
taken for the worst case instruction. This will have a large performance
impact on an application processor core, where the longest instructions (load
and store multiple) can take 60 times the amount of time of the fastest.

Suggested Solutions:

 Use smartcard technology to create your SoC

 Perform operations that must be protected against such Attacks in a
separate or integrated smartcard type core

T.HWT.007 Bypass security by
glitch Attacks (e.g. power)

Moderate Moderate WWW

Description:

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 38 of 50 OMTP PUBLISHED

This is the technique of "glitching" the signals of the processor to cause it to
perform actions other than those in its instruction sequence. The hope of the
Threat Agent is that by doing so the processor will leak some data across a
security boundary that will enable them to perform a wider spread security
break. Typically a glitch will be induced by changing the supply voltage or
clock frequency of a core, or by sending "out of specification" signals into
random core pins.

Suggested Solutions:

 A full security core will have protection built into its structure to detect
such Attacks and block leakage of information. Generally these
protections are layout specific (i.e. design work done by the chip
foundry or their physical design suppliers) and not related to the 'logic'
of the processor

o Such defences are not normally placed on a standard
application processor, but there is no technical reason why
some of these could not be considered

T.HWT.008 Bypass security by
power removal to NV memory

Easy Easy WWW

Description:

Consider a system where long term security data is held by signing against
secrets held in write-many non-volatile (NV) storage. What does that system
do when NV storage fails?

It should be remembered that NV storage on-SoC is a difficult technology due
to silicon manufacturing process considerations, and so often current NV
memory is off-SoC and hence its data is vulnerable to interception.

Secure NV store often works by having a very small on-SoC NV counter plus
an on-SoC Secret Key, linked algorithmically to a bigger off-SoC NV store
such as Flash.

The on-SoC counter can be used to prove that the off-SoC store has not
been tampered with. The question is then, what do we do when the on-SoC
NV store fails?

Suggested Solutions:

 Off-SoC NV store works with a shared secret to protect the channel to
the on-SoC secure execution space. Then no on-SoC NV storage may
be needed

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 39 of 50 OMTP PUBLISHED

T.HWT.009 Attack through
interaction of hardware
concurrent processes causing
logical breaks

Hard Moderate WWW

Description:

This threat is included because concurrency in a system makes it very difficult
to perform any sort of security analysis. It is not a hole as such, but the
parallel execution of unsynchronised actions makes it very hard to certify a
system and therefore is not desirable. For example, where multiple CPU
cores exist on a platform, software on one core may be able to affect
execution of code on the other CPU by locking hardware resources.
Alternatively, it is possible for two processors sharing a common cache to
analyse the cache usage of the other processor to derive security information
and even resolve keys.

Suggested Solutions:

 Stay with a simple thread interaction model in any area that is dealing
with security, and isolate that area cleanly from other more complex
processing models

 With a hardware Attack, one must make sure that the resolution of the
information (for example in the cache usage) is insufficient to use
statistical techniques to derive data

o The concurrency in this case has to allow clearing of cache at
frequencies on a par with the security operation cycle time and
so is not practical Attack under a virtualisation model where
transitions are in hundreds of cycles (or more)

4.5 HARDWARE THREATS – COMPONENT INVASIVE (T.HWC.XXX)

In general there are a number of interesting papers focused on smartcards
that are useful introductions to this topic, See Ref [4] and [5].

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.HWC.001 Extract secret via
Bus monitoring (de-cap/drill &
hardware probes)

Hard Hard Small Corp

Description:

Applying a monitoring probe to a de-capped chip, or drilled multilayer PCB,
allows access to physical busses that data traverses.

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 40 of 50 OMTP PUBLISHED

 This is likely to destroy the device for normal use while preparing for
the probing

Suggested Solutions:

 Obfuscate physical layout

 Apply protective layers to resist, or be indicative of, attempts to attach
such probes.

 Stack devices at package or die level to prevent attachment of probes

 Encrypt the data in transit over the bus

T.HWC.002 Hardware Attacks
on static information in internal
RAM (on-SoC, inside IC
package)

Hard Hard Small Corp

Description:

Hardware probing data held in internal RAM. It is possible to use
micromanipulator to place a probe onto a SoC and make contact with silicon
buses that are in the surface layer of the silicon. A badly designed SoC might
have a bus port allowing access to internal buses.

Static information has a discoverable location and so may be more
susceptible to probing when multiple physical devices have to be destroyed to
get one set of known good data as it provides a stable target for the Threat
Agent. An example of this is eFuse, where a Threat Agent is looking to strip a
SoC down to be able to physically see the state of an eFuse array. This threat
is effective at extracting class secrets stored on-chip.

See page 11 of "Advances in Smartcard Security", by Marc Witteman [4].

Suggested solutions:

 Do not allow external access to internal buses

 Investigate technology that does not have a readily discernable
physical presence.

o There are methods under development for creating device
unique keys that do not require eFuse. Given a device unique
key, then the device itself can encode, sign and store keys from
external sources

T.HWC.003 Hardware Attacks
on dynamic information in
internal RAM (on-SoC, inside
IC package)

Hard Hard Small Corp

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 41 of 50 OMTP PUBLISHED

Description:

Hardware probing data held in internal RAM. It is possible to use a
micromanipulator to place a probe onto a SoC and make contact with silicon
buses that are in the surface layer of the silicon. A badly designed SoC might
have a bus port allowing access to internal buses.

Dynamic information is more difficult to prove as authentic, as its signature
(including both contents and location) may constantly change. However, this
also makes an attack more difficult. This threat is effective at extracting class
secrets stored on-chip.

Suggested solutions:

 Do not allow external access to internal buses

 Use a heuristic based integrity protection scheme to mitigate write
attacks

 Use obfuscation techniques

T.HWC.004 De-capping of the
chip holding secrets

Hard Hard Small Corp

Description:

Using techniques such as etching with nitric acid (HNO3), it is possible to
remove the packaging from a SoC and allow Attacks on the silicon itself.

Suggested solutions:

 Place protective layers on the actual silicon that when removed break
SoC operation.

T.HWC.005 Focused Ion Beam
(FIB) manipulation

Hard Hard Small Corp

Description:

A FIB is a variant of an electron microscope that can not only be used to
examine chip surfaces but actually lay down deposits to change state and
allow illegal attachment of probes.

This threat also includes scanning electron microscope attacks.

Suggested solutions:

 Apply the protective measures in T.HWC.004 and T.HWC.006

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 42 of 50 OMTP PUBLISHED

T.HWC.006 Probe Stations Hard Hard Small Corp

Description:

Probe stations are available for Silicon manufacturers to diagnose production
problems.

They can also be used to steal information that is local to a piece of silicon.
Probing is normally used to read bus traffic and gather information that way.

Suggested solutions:

 Make on-SoC bus inaccessible by running sub surface

 Scramble the data travelling on-SoC

4.6 HARDWARE CLONING, COMPONENT REPLACEMENT OR

COMPONENT ADDITION THREATS (T.CLO.XXX)

THREAT DESCRIPTION
REQUIRED

EXPERTISE
EASE OF

REPEAT
EASE OF

DISTRIBUTION

T.CLO.001 Cloning Device by
copying PCB and Flash

Hard Hard Corporate

Description:

Manufacturer "A" spends millions of dollars to develop a Device. The
components are “off the shelf”, so the value is in the composition of those parts
and the addition of the software they run. Manufacturer "B" can buy the same
components, reverse engineer the PCB layout and make a copy of "A"s Flash
to gain the software.

Suggested solution:

 This can be prevented if the SoC (a standard component) will not run the
flash unless there is a common secret or key

o If that common secret or key can be guarded from "B" then while
the devices are identical "B" cannot make theirs run without
changing the Flash

o “B” cannot „ghost‟ the RAM of a running device because if at any
stage that ghost references information locked to that common
key (which he doesn‟t have) then it will fail

o By ghosting, we are referring to taking a snapshot copy of the
state of a device from RAM (using hardware emulation techniques
on the external RAM), and starting the clone devices by dumping
in that known state

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 43 of 50 OMTP PUBLISHED

T.CLO.002 External RAM Chip
Replacement Attack

Hard Moderate Small Corp

Description:

Here we are considering replacement of an external RAM chip by another chip
which may contain faked software or data, or have the capability to leak,
manipulate or record data.

Suggested Solutions:

 Do not place secrets in external RAM

 Do not place secret manipulators in external RAM

 Encrypt and / or integrity protect the data in external RAM

T.CLO.003 Hardware Attacks to
change static information in
external RAM

Hard Moderate Small Corp

Description:

Once data is loaded from Flash to RAM for execution, it is typically considered
only vulnerable to software Attacks such as software bug exploits. In the future,
when protections are in place against that level of Attack, we will find that the
sort of Mod Chip found on games consoles and DVD players will start to be
seen on embedded devices. These typically consist of a microcontroller with
limited ROM containing Attack code. They can take their power from the device,
and are used to interfere with data on the bus between the SoC and the DRAM.
As such they might also be used to Attack data travelling from Flash to SoC
with Flashes that may be secure to normal programming /replacement Attacks.

Suggested Solutions:

 Route tracking sub-surface in the PCB to make access more difficult

 Apply protective layers to resist, or be indicative of, attempts to attach
foreign hardware (mod chips)

 Stack devices at package or die level to prevent attachment of foreign
hardware (mod chips)

 Move critical code and data into SoC package

 Implement verification of all code/data received from sources external to
SoC

o Consider the use of hardware based automatic verification

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 44 of 50 OMTP PUBLISHED

T.CLO.004 Hardware Attacks to
change dynamic information in
external RAM

Hard Moderate Small Corp

Description:

Here we are considering a Mod Chip that intercepts and changes varying code
and data being written from SoC to random locations in RAM. This is a very
advanced Attack and would only occur when simpler Attacks on the Flash to
SoC and static code/data transfers have been blocked.

Suggested Solutions:

 While it is probably impossible to identify a change to dynamic data, it is
possible to periodically test security critical interfaces to see if the guards
are still functional, and hence to gather an indication of security failure

o A typical example of this is to route the signal from the watchdog
via the non-secure domain to the secure domain. This indicates
that the schedulers in both domains are running, and that
(importantly) messages are being correctly routed in the system

 Consider the use of hardware based automatic verification:
o While it would be extremely difficult for software to keep track of

ALL dynamic data being written to off-SoC memory, and verify it
on return, it may be practical to build a hardware block that tracks
these things on a page by page basis

o If there was suitable hardware then to apply a 32bit CRC (Cyclic
Redundancy Check - a fast simple hash) to 4Kbyte pages, it
requires 1Kb of on-SoC memory to store the CRC's for each 1Mb
of off-SoC memory. However such hardware is not simple and
may add unacceptable system delay while it performs its CRC

 Route tracking sub-surface in the PCB to make access more difficult

 Apply protective layers to resist, or be indicative of, attempts to attach
foreign hardware (mod chips)

 Stack devices at package or die level to prevent attachment of foreign
hardware (mod chips)

T.CLO.005 Attack by
replacement of Flash when
power is off (pre-boot)

Hard Moderate Small Corp

Description:

If all routes for changing Flash contents are secured, through hacking 'defined'
APIs such as JTAG / serial download / hacking software with its own Flash
drivers, then it always possible to bypass all these by physically replacing the
Flash with one containing hacked code.

Suggested Solutions:

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 45 of 50 OMTP PUBLISHED

 Secure boot may pick up this change as validation keys become
incorrect

 Some Flashes contain unique IDs that can be linked to software that is
built into the SoC

 Some Flashes now contain a processor that may provide internal
protections against simple replacement

T.CLO.006 Attack by
replacement of Flash when
power is on (post-boot)

Hard Moderate Small Corp

Description:

Post-boot Flash substitution requires a little more effort by the Threat Agent.

An example of method that might be deployed is that of using a double size
Flash device, with the same physical package outline as the original. It is then
possible to boot from the normal address space with the usual static memory
secure boot Integrity checks occurring. Then, at some time after completion of
the boot process, the address space can be remapped to the upper half of the
Flash simply by forcing the state of the highest address pin exposing the
system to execute non-signed or unchecked code. Then the Attacking changes
will take effect as soon as those code and data blocks are copied from Flash to
RAM, for example by a paged memory system.

Suggested Solutions:

 Validate all data loaded from Flash against information that has its
validation based in a source outside of Flash; do not just perform boot
time validation

o Note that on a typical 200Mhz processor it can take 0.2seconds to
verify 2Mbyte of code - if you do not do anything else

 Employ the solutions suggested in T.CLO.005

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 46 of 50 OMTP PUBLISHED

5 DEFINITION OF TERMS

TERM DESCRIPTION

ACCESS

CONTROL

Security mechanism which guaranties Asset security
properties by restricting the ability to use (read, execute,
modify or delete) an Asset.

ASSET Resource whose security properties need to be protected

ATTACK
An intentional act attempting to violate the UE Security
Policy.

AUTHENTICITY
The property that a legitimate user can correctly identify
an Asset as being genuine and attributable to its authors
or caretakers

AUTHORISED

PARTY

An entity that is authorised to perform a specific operation
on Assets. This authorisation depends on the Security
Policy of the Asset‟s owner (definition updated from
‟OMTP Trusted Environment; OMTP TR0‟ [6])

BINDING

Binding is used to associate two or more entities to each
other. The association makes it more difficult to without
detection exchange one or more of the entities for entities
which are not part of the original, valid association.

BUFFER

OVERFLOW

A buffer overflow is an erroneous condition where a
process attempts to store data beyond the boundaries of a
fixed-length buffer. The result is that the extra data
overwrites adjacent memory locations.

BUS

A collection of signals. In this document, often referring to
the collection that will move data between a bus master
and a memory (or peripheral) decoded to be at a specific
address location

BUS MASTER
Any component (CPU, DSP, DMA, CLCD, etc) that is
capable of initiating movement of data on a bus

CLASS SECRET

Any secret that is common to a group. These are
particularly vulnerable due to availability on a large
number of terminals. They are of a sensitive nature
because the information gained can be used to attack a
large number of devices.

EFUSE
Technology which allows for the dynamic real-time
reprogramming of computer chips

EXTERNAL RAM
RAM which resides in a different IC package to the Bus
Master that is communicating with it.

FLASH process of re-programming a system

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 47 of 50 OMTP PUBLISHED

TERM DESCRIPTION

INTEGRITY
The property of an Asset that it has been modified only by
an Authorised Party (Definition updated from the ‟OMTP
Trusted Environment; OMTP TR0‟ [6]).

INTERNAL RAM
RAM which resides in the same IC package as the Bus
Master that is communicating with it.

MOD CHIPS
Equivalent to Modification Chips. small electronic device
used to modify or disable built-in restrictions and
limitations of a system

SCAN CHAIN

A method to enable a serial port on a SoC to connect
directly to all registers and other locations holding dynamic
state. Typically used in connection with debug, trace and
loading of initial data into a new device.

SECURE BOOT
A method of starting a device that ensures that the code
and data, that is initially used, comes from an authorised
source.

THREAT
Capabilities, intentions and attack methods of adversaries,
or any circumstance or event with the potential to violate
or bypass the UE Security Policy.

THREAT AGENT

Any human user or Information Technology (IT) product or
system, which may attempt to violate or bypass the UE
Security Policy and perform an unauthorised operation
with the UE.

TYPE-SAFE
Code that accesses only the memory locations it is
authorized to access, and only in well-defined, allowable
ways.

TYPE-UNSAFE Code that is not Type-Safe

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 48 of 50 OMTP PUBLISHED

6 ABBREVIATIONS

ABBREVIATION DESCRIPTION

API Application Programming Interface

BIST Built-in Self Test

CLCD Colour Liquid Crystal Display

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DRM Digital Rights Management

DSP Digital Signal Processor

ETM Embedded Trace Macrocell

FIB Focussed Ion Beam

FOTA Firmware Over The Air

HTTP Hyper Text Transport Protocol

HTTPS Secure HTTP

IC Integrated Circuit

IMEI International Mobile Equipment Identity Number

I/O Input / Output

JTAG Joint Test Action Group

LCD Liquid Crystal Display

MMU Memory Management Unit

NV Non-volatile

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 49 of 50 OMTP PUBLISHED

ABBREVIATION DESCRIPTION

OS Operating System

PCB Printed Circuit Board

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RTL Runtime Libraries

RTOS Real-Time Operating System

SIM Subscriber Identity Module

SOC System-on-Chip

TCP/IP Transmission Control Protocol / Internet Protocol

UE User Equipment

VMM Virtual Machine Monitor

OMTP SECURITY THREATS ON EMBEDDED CONSUMER DEVICES v1.1

© 2009 OMTP Limited. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from OMTP Limited.

Page 50 of 50 OMTP PUBLISHED

7 REFERENCED DOCUMENTS

NO. DOCUMENT AUTHOR DATE

1

Vocabulary for 3GPP Specifications
(3GPP TR 21.905 v7.0.0)

See
http://pda.etsi.org/pda/home.asp?wkr=RT
R/TSGS-0121905v640

3GPP Sept
2005

2
Milk or wine: does software security
improve with age?

Andy
Ozment

2006

3
Estimating source lines of code from
object code: Windows and Embedded
Control Systems

Les Hatton
Aug
2005

4 Advances in Smartcard Security
Marc
Witteman

July
2002

5
Design Principles for Tamper-Resistant
Smartcard Processors

Oliver
Kommerling
Markus G.
Kuhn

May
1999

6

Trusted Environment: OMTP TR0

http://www.omtp.org/Publications/Display.a
spx?Id=f45e6775-2ecf-40fa-8cf2-
dbe182ee9b58

OMTP May
2009

------- END OF DOCUMENT --------

http://pda.etsi.org/pda/home.asp?wkr=RTR/TSGS-0121905v640
http://pda.etsi.org/pda/home.asp?wkr=RTR/TSGS-0121905v640
http://www.omtp.org/Publications/Display.aspx?Id=f45e6775-2ecf-40fa-8cf2-dbe182ee9b58
http://www.omtp.org/Publications/Display.aspx?Id=f45e6775-2ecf-40fa-8cf2-dbe182ee9b58
http://www.omtp.org/Publications/Display.aspx?Id=f45e6775-2ecf-40fa-8cf2-dbe182ee9b58

